首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterization of 11- and 18-residue peptaibols (peptides synthesized by peptide synthetases) at Trichoderma harzianum CECT 2413 (a filamentous fungus) was performed. Using a heterologous probe from tex1, the only peptaibol synthetase cloned and characterized so far in Trichoderma species, was cloned; a region that comprised 11676 bp of a second peptide synthetase gene detected in these strain (called salps2) and sequenced. The deduced sequence of Salps2 (3891 amino acids) contained three complete and a fourth incomplete module of a peptide synthetase, in which the typical adenylation, thiolation and condensation domains were found, but also an additional dehydrogenase/reductase domain in the C-terminus of the last module. Based on sequence similarity and analysis of its modular structure, it is proposed that Salps2 is a peptaibol synthetase. Additionally, analysis of =4.4-kb sequence downstream of salps2 was done and the signature sequences of Salps2 were identified and compared with those of available sequences of the other Trichoderma peptaibol synthetases.  相似文献   

2.
In order to examine the potential correlation between infrared absorption spectra and 3(10)- and alpha-helices and beta-bend ribbon structures, the secondary structures of synthetic peptides known to contain pure 3(10)-helices, mixed 3(10)/alpha-helices, and pure beta-bend ribbon structures, based upon X-ray diffraction and NMR studies, have been investigated by using FTIR spectroscopy incorporating resolution-enhancement techniques. Studies of the peptides known to contain a stable 3(10)-helix in CDCl3 show the main amide I band of fully stable 3(10)-helices occurs at 1666-1662 cm-1. Resolution-enhancement methods revealed small contributions at 1681-1678 and 1646-1644 cm-1, while the amide II band occurs at 1533-1531 cm-1. Peptides known to contain both alpha- and 3(10)-helices in their structure exhibit bands characteristic of both types of conformation. Peptides known to fold into the beta-bend ribbon structure show an amide I band maximum at 1648-1645 cm-1 with the amide II band at 1538-1536 cm-1. Incorporation of these peptides into model membrane structures, e.g., DMPC vesicles, in aqueous buffer sometimes produces changes in the peptide secondary structure. Those peptides which possess a 3(10)-helical structure in CDCl3 solution change the secondary structure in DMPC vesicles to predominantly alpha-helical, plus a contribution from short, unstable 3(10)-helix and/or beta-turns. Those peptides which contain a combination of alpha- and 3(10)-helical structures in CDCl3 solution tend to retain some 3(10)-helical structure within the lipid environment, although the overall H-bonding pattern is altered. Those peptides which form a beta-bend ribbon structure appear to be largely unaffected in the membrane environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The peptaibols are a large family of membrane-active peptides with considerable sequence homology, but with different biological properties and three-dimensional structures. They constitute a rich resource of naturally occurring 'mutants' which are potentially valuable for structure/function studies of ion channels. A searchable on-line database of sequences and structures of the peptaibols has been created at http://www.cryst.bbk.ac.uk/peptaibol, as a resource for the biological and structural community. In this paper, the contents and organization of the website are discussed as well as procedures for submission of new entries to the database. At present, more than 300 peptaibol sequences are stored in the database. Each sequence entry contains its full literature reference and information about its biological source. Tools are provided for searching for specific peptaibol sequences or groupings of sequences, and for locating peptaibols containing specified sequence motifs. In addition the website acts as a database for structural information. The coordinates of all currently available peptaibol x-ray and NMR structures are included and complemented, where appropriate. with molecular graphics illustrations. These include figures of model channel structures and comparisons between different peptaibol structures. The peptaibol database thus provides a tool for ready access to information and a means of investigating the sequences and structures of this class of polypeptides.  相似文献   

4.
Peptaibols and the related peptaibiotics are linear, amphipathic polypeptides. More than 300 of these secondary metabolites have been described to date. These compounds are composed of 5-20 amino acids and are generally produced in microheterogeneous mixtures. Peptaibols and peptaibiotics with unusual amino acid content are the result of non-ribosomal biosynthesis. Large multifunctional enzymes known as peptide synthetases assemble these molecules by the multiple carrier thiotemplate mechanism from a remarkable range of precursors, which can be N-methylated, acylated or reduced. Peptaibols and peptaibiotics show interesting physico-chemical and biological properties including the formation of pores in bilayer lipid membranes, as well as antibacterial, antifungal, occasionally antiviral activities, and may elicit plant resistance. The three-dimensional structure of peptaibols and peptaibiotics is characterized predominantly by one type of the helical motifs alpha-helix, 3(10)-helix and beta-bend ribbon spiral. The aim of this review is to summarize the data available about the biosynthesis, biological activity and conformational properties of peptaibols and peptaibiotics described from Trichoderma species.  相似文献   

5.
Trichoderma virens, an imperfect fungus, is used as a biocontrol agent to suppress plant disease caused by soilborne fungal pathogens. Antimicrobial peptides it produces include peptaibols of 11, 14, and 18 amino acids in length. These peptaibols were previously reported to be synthesized by a non-ribosomal peptide synthetase (NRPS) encoded by the Tex1 gene in strain Tv29-8. The present study examined the Tex1 homolog in a commercially relevant T. virens strain, G20. Although the gene in G20 was 99% identical in DNA sequence to Tex1 in the 15.8 kb compared, gene disruption results indicate that it is only responsible for the production of an 18-mer peptaibol, and not 11-mer and 14-mer peptaibols. Additional NRPS adenylate domains were identified in T. virens and one was found to be part of a 5-module NRPS gene. Although the multimodule gene is not needed for peptaibol synthesis, sequence comparisons suggest that two of the individual adenylate domain clones might be part of a separate peptaibol synthesis NRPS gene. The results indicate a significant diversity of NRPS genes in T. virens that is unexpected from the literature.  相似文献   

6.
Chrysospermin C is a 19-residue peptaibol capable of forming transmembrane ion channels in phospholipid bilayers. The conformation of chrysospermin C bound to dodecylphosphocholine micelles has been solved using heteronuclear NMR spectroscopy. Selective 15N-labeling and 13C-labeling of specific alpha-aminoisobutyric acid residues was used to obtain complete stereospecific assignments for all eight alpha-aminoisobutyric acid residues. Structures were calculated using 339 distance constraints and 40 angle constraints obtained from NMR data. The NMR structures superimpose with mean global rmsd values to the mean structure of 0. 27 A (backbone heavy atoms) and 0.42 A (all heavy atoms). Chrysospermin C bound to decylphosphocholine micelles displays two well-defined helices at the N-terminus (residues Phe1-Aib9) and C-terminus (Aib13-Trp-ol19). A slight bend preceding Pro14, i.e. encompassing residues 10-12, results in an angle of approximately 38 degrees between the mean axes of the two helical regions. The bend structure observed for chrysospermin C is compatible with the sequences of all 18 long peptaibols and may represent a common 'active' conformation. The structure of chrysospermin C shows clear hydrophobic and hydrophilic surfaces which would be appropriate for the formation of oligomeric ion channels.  相似文献   

7.
Trichogin GA IV is a special member of a class of peptaibols that are linear peptide antibiotics of fungal origin, characterised by the presence of a variable number of alpha-aminoisobutyric acid residues, an acyl group at the N-terminus and a 1,2-amino alcohol at the C-terminus. Most of the peptaibols display ion-channel-forming or at least membrane-modifying properties. The 11-residue-long trichogin GA IV is not only one of shortest peptaibols, but it is also unique for its n-octanoyl group instead of the more common found acetyl group at the N-terminus. For the first time we have found that this lipopeptaibol is able to enhance conduction of monovalent cations through membranes of large unilamellar vesicles (LUVs). The influence of the [Leu-OMe]trichogin GA IV analogue (TRI) on ion permeation was studied under a variety of conditions (lipid composition, lipid-to-peptide ratio and a transmembrane potential). Parallel experiments were performed with the 16-residue long, channel-forming peptaibol, zervamicin (ZER). For the two peptides, the permeability between K(+) and Na(+) was found to be different. In addition, the ion diffusion rate dependencies on the peptide concentration are observed to be different. This might indicate that a different number of aggregated molecules are involved in the rate-limiting step, i.e. 3-4 (TRI) and 4-7 (ZER). In the presence of TRI, dissipation of the transmembrane potential, Delta psi, was observed with a rate to be dependent on the magnitude of both initial Delta psi and peptide concentration. Both peptides were activated by a cis-positive but not by cis-negative Delta psi. Under identical conditions the ion-conducting efficiency of zervamicin was 100-200 times higher than that of trichogin. Our results show that, unlike for zervamicin, the membrane-modifying activity of trichogin is not associated with a channel mechanism.  相似文献   

8.
KL 4 is a 21-residue peptide employed as a functional mimic of lung surfactant protein B, which successfully lowers surface tension in the alveoli. A mechanistic understanding of how KL 4 affects lipid properties has proven elusive as the secondary structure of KL 4 in lipid preparations has not been determined at high resolution. The sequence of KL 4 is based on the C-terminus of SP-B, a naturally occurring helical protein that binds to lipid interfaces. The spacing of the lysine residues in KL 4 precludes the formation of a canonical amphipathic alpha-helix; qualitative measurements using Raman, CD, and FTIR spectroscopies have given conflicting results as to the secondary structure of the peptide as well as its orientation in the lipid environment. Here, we present a structural model of KL 4 bound to lipid bilayers based on solid state NMR data. Double-quantum correlation experiments employing (13)C-enriched peptides were used to quantitatively determine the backbone torsion angles in KL 4 at several positions. These measurements, coupled with CD experiments, verify the helical nature of KL 4 when bound to lipids, with (phi, psi) angles that differ substantially from common values for alpha-helices of (-60, -45). The average torsion angles found for KL 4 bound to POPC:POPG lipid vesicles are (-105, -30); this deviation from ideal alpha-helical structure allows KL 4 to form an amphipathic helix at the lipid interface.  相似文献   

9.
Peptaibols are a group of small peptides having a high α-aminoisobutyric acid (Aib) content and produced by filamentous fungi, especially by the members of the genus Trichoderma (anamorph Hypocrea). These antibiotics are economically important for their anti-microbial and anti-cancer properties as well as ability to induce systemic resistance in plants against microbial invasion. In this study we present sequences of two classes (11-residue and 14-residue) of peptaibols produced by the biocontrol fungus Trichoderma virens. Of the 35 11-residue peptaibols sequenced, 18 are hitherto not described, and all the 53 14-residue sequences described by us here are new. We have also identified a peptaibol synthetase (non-ribosomal peptide synthetase, NRPS) with 14 complete modules in the genome of this fungus and disruption of this single gene (designated as tex2) resulted in the loss of both the classes of peptaibols. We, thus present here an unprecedented case where a single NRPS encodes for two classes of peptaibols. The new peptaibols identified here could have applications as therapeutic agents for the management of human and plant health.  相似文献   

10.
Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well‐known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non‐ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS‐based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18‐residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.  相似文献   

11.
Cyclic peptides containing sarcosine, cyclo-(Pro-Sar-Gly)2, cyclo-(Sar-Sar-Gly)2, cyclo-(Sar4), and cyclo-(Sar6) have been synthesized by the cyclization of the p-nitrophenyl ester of linear peptides. The tert-butoxycarbonyl group was used as the Nα-protecting group, which was removed by acid. Benzyl ester was used to protect the C-terminal. tert-butoxycarbonylpeptide was obtained by the stepwise elongation of the peptide bond by the carbodiimide method. Deblocking and cyclization of the linear peptides gave the cyclic peptides.  相似文献   

12.
13.
Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, Cα-tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage. All of the peptaibol–membrane interaction mechanisms proposed so far begin with peptide aggregation or accumulation. The long-length alamethicin, the most studied peptaibol, acts by forming pores in the membranes. Conversely, the carpet mechanism has been claimed for short-length peptaibols, such as trichogin. The mechanism of medium-length peptaibols is far less studied, and this is partly due to the difficulties of their synthesis. They are believed to perturb membrane permeability in different ways, depending on the membrane properties. The present work focuses on pentadecaibin, a recently discovered, medium-length peptaibol. In contrast to the majority of its family members, its sequence does not comprise hydroxyprolines or prolines, and its helix is not kinked. A reliable and effective synthesis procedure is described that allowed us to produce also two shorter analogs. By a combination of techniques, we were able to establish a 3D-structure–activity relationship. In particular, the membrane activity of pentadecaibin heavily depends on the presence of three consecutive Aib residues that are responsible for the clear, albeit modest, amphiphilic character of its helix. The shortest analog, devoid of two of these three Aib residues, preserves a well-defined helical conformation, but not its amphipathicity, and loses almost completely the ability to cause membrane leakage. We conclude that pentadecaibin amphiphilicity is probably needed for the peptide ability to perturb model membranes.  相似文献   

14.
Conformational analyses on four cyclic model peptides of the beta-bend, cyclo(L- or D-Phe-L-Pro-epsilon-aminocaproyl(Aca] and cyclo(L-Pro-L- or D-Phe-Aca), were carried out both experimentally and theoretically. Cyclo(D-Phe-L-Pro-Aca) was shown to exist as a single conformer taking the type II' beta-bend. The comparison of its CD spectra with those of cyclo(L-Ala-L-Ala-Aca) revealed that type I and II' beta-bends, both with alpha-helix-like CD spectra, can be distinguished. Cyclo(L-Phe-L-Pro-Aca) was shown to exist as a single conformer with a cis L-Phe-L-Pro peptide bond, taking the type VI beta-bend. Its CD spectrum has thus been observed for the first time for the bend containing a cis peptide bond. Cyclo(L-Pro-L-Phe-Aca) was shown to exist as a mixture of two conformers, the major one taking the type I beta-bend with a trans Aca-L-Pro peptide bond and the minor one with a cis Aca-L-Pro peptide bond. Cyclo(L-Pro-D-Phe-Aca) was suggested to exist as a mixture of two conformers, the major one taking the type II beta-bend with a trans Aca-L-Pro peptide bond and the minor one with a cis Aca-L-Pro peptide bond.  相似文献   

15.
The fungus Trichoderma virens is a ubiquitous soil saprophyte that has been applied as a biological control agent to protect plants from fungal pathogens. One mechanism of biocontrol is mycoparasitism, and T. virens produces antifungal compounds to assist in killing its fungal targets. Peptide synthetases produce a wide variety of peptide secondary metabolites in bacteria and fungi. Many of these are known to possess antibiotic activities. Peptaibols form a class of antibiotics known for their high alpha-aminoisobutyric acid content and their synthesis as a mixture of isoforms ranging from 7 to 20 amino acids in length. Here we report preliminary characterization of a 62.8-kb continuous open reading frame encoding a peptaibol synthetase from T. virens. The predicted protein structure consists of 18 peptide synthetase modules with additional modifying domains at the N- and C-termini. T. virens was shown to produce a mixture of peptaibols, with the largest peptides being 18 residues. Mutation of the gene eliminated production of all peptaibol isoforms. Identification of the gene responsible for peptaibol production will facilitate studies of the structure and function of peptaibol antibiotics and their contribution to biocontrol activity.  相似文献   

16.
The conformational properties in DMSO of two head-to-tail cyclic analogues of kallidin ([Lys(0)]-bradykinin, KL) as well as those of the corresponding linear peptides were studied by NMR and molecular dynamics (MD) simulations. The modifications in the sequence were introduced at position 6, resulting in the four peptides, [Tyr(6)]-KL (YKL), [Trp(6)]-KL (WKL), cyclo-([Tyr(6)]-KL) (YCKL) and cyclo-([Trp(6)]-KL) (WCKL).The linear WKL analogue was significantly more potent than kallidin on rat duodenum preparations, whereas YKL was significantly less potent. Both cyclic peptides, YCKL and WCKL displayed similar activity, lower than that of the linear analogues and also of cyclo-KL.The two linear analogues display high conformational flexibility in DMSO. In the predominant conformer, for both peptides, all three X-Pro bonds adopt a trans configuration. Three out of four conformers present in YCKL and WCKL were completely assigned. The configurations at the X-Pro bonds are the same for the two analogues. All cyclic conformers show a cis configuration in at least one X-Pro bond and always opposite configuration for the two consecutive X-Pro bonds.The NOE-restrained MD calculations resulted in the detection of several elements of secondary structure in each of the conformers. Such elements are described and their possible relevance to biological activity is discussed.  相似文献   

17.
Relevant parameters and stereochemical consequences of helices [alpha-helix, 3(10)-helix, beta-bend ribbon spiral, gamma-helix, 2.0(5)-helix, poly(Pro)(n) type-I and -II helices, and collagen triple helix] of peptides based on alpha-amino acids for use as templates in various branches of chemistry are briefly discussed.  相似文献   

18.
Fungi of the genus Sepedonium (anamorphic ascomycetes) are known to infect fruiting bodies of Basidiomycetes of the order Boletales. We have characterized twelve Sepedonium isolates by intact-cell mass spectrometry (IC-MS) with the help of respective biomarkers and their metabolite spectra focusing on peptaibol production. A strain of mycoparasitic S. chalcipori was grown in solid-state fermentation, and tylopeptin production was found, suggesting an ascomycete origin of these peptaibols, which were first described in the basidiomycete Tylopilus neofelleus. In addition, the structures of two new peptaibols, chalciporin A (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Ser-Leu-Ala-Leu-Aib-Gln-Leuol) and chalciporin B (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Gln-Aib-Ala-Leu-Aib-Gln-Leuol) are presented. The IC-MS technique was applied for in situ peptaibol analysis of Sepedonium strains growing on Boletales, in particular S. chrysospermum infecting Xerocomus cf. badius. We found chrysospermins at the surface and within basidiomycete tissue, as well as in the cultivated parasite.  相似文献   

19.
Trichoderma spp. are regularly found as a constituent of the mycoflora of many soils and are noted for their antagonistic activity against bacteria and other fungi. This latter property is the basis for the widespread interest in their use in the biological control of soil-borne fungal plant pathogens. This antagonism is partly based on their ability to produce an impressive inventory of secondary metabolites. An important group of bioactive metabolites produced by Trichoderma spp. are the non-ribosomal peptides (NRPs), especially the peptaibols. A virulent antagonistic strain, T. asperellum, which had been used in biological control strategies in Malaysia and previously examined for mycolytic enzyme production, has been studied for its potential for peptaibol production. The present research demonstrated the ability of T. asperellum to produce at least two metabolites which were identified as acid trichotoxin 1704E (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Ala-Aib-Pro-Leu-Aib-Iva-Glu-Vol) and neutral trichotoxin 1717A (Ac-Aib-Gly-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Ala-Aib-Aib-Pro-Leu-Aib-Iva-Gln-Vol). Addition of free Aib to the culture medium enhanced the production of trichotoxins. Biological activity of these substances was investigated against Bacillus stearothermophilus. The general characteristics of peptaibols, also found in the trichotoxins, include the presence of high proportions of the uncommon amino acid Aib, the protection of the N- and C-termini by an acetyl group and reduction of the C-terminus to 2-amino alcohols, respectively, amphipathy and microheterogeneity.  相似文献   

20.
Alamethicin (Alm) is one of the most extensively studied membrane-active antibiotic peptides, but several aspects of its mechanism of action are still under debate. In this study, synthetic analogues of natural Alm F50/5 (Alm-N), labeled with a 9H-fluoren-9-yl group at the N- (F-Alm) or C-terminus (Alm-F), were employed to investigate the position and orientation of this peptide in the membrane environment. Depth-dependent fluorescence quenching and polarized ATR-FT-IR experiments demonstrated that, in the absence of a transmembrane potential, Alm inserts its N-terminus into the membrane, while the C-terminus is exposed to the outer aqueous phase. We also found that the peptaibol populates different orientations with respect to the membrane normal. Furthermore, fluorescence resonance-energy transfer (FRET) indicated that no peptide translocation to the inner leaflet of lipid bilayers occurs. The mechanism of action of Alm is discussed on the basis of these findings. Two other Alm analogues, Alm-P and Alm-S, were exploited to investigate the role of specific Alm residues in terms of membrane-perturbing activity. Substitution of two or three Gln (E) residues (the only polar amino acids in the alamethicin sequence) by gamma-methyl glutamate (Glu(OMe)) residues induced marked variations in the aggregation and partition behaviors of the peptaibols, which, in turn, modulate their membrane activity. In particular, substitution of Gln(18) and Gln(19) caused a six-fold increase in membrane-perturbing activity, thus demonstrating that these residues are not essential for the stabilization of Alm pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号