首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe the distribution in space and time of a series of physical and chemical variables, phyto-plankton, and primary production in Ezequiel Ramos Mexía Reservoir (Argentina). Its waters are soft, poor in nutrients and with a low transparency that greatly depresses primary production. Phytoplankton data indicate the presence of 79 taxa with Bacillariophyceae, Cyanophyta and Chlorophyta alternatively dominant. Chlorophyll a was always low and never exceeded 3 mg m−3. Based on these results, the trophic status of this ecosystem is discussed.  相似文献   

2.
浙江紧水滩水库浮游植物群落结构季节变化特征   总被引:10,自引:0,他引:10  
于2010年1、3、5、7、9、11月6次对紧水滩水库采样调查,并对浮游植物种类鉴定与数量统计,分析了浮游植物的优势种、多样性和群落结构季节变化特征.其结果为:共鉴定浮游植物284种,隶属7门105属.绿藻门最多,共51属139种,其次是硅藻门19属67种,蓝藻门22属52种,金藻门4属9种,甲藻门5属8种,裸藻门2属5种,隐藻门2属4种.浮游植物细胞丰度在1.04× 105-3.70×106个/L之间,平均丰度9.63×105个/L.多样性指数H'值为1.76-4.64,平均值3.09,丰富度指数D为0.48-2.80,平均值1.62,均匀度指数.J为0.51-1.26,平均值0.91.根据TSI(∑)并结合浮游植物群落结构对水质评价,紧水滩水库水质属于中-富营养状态.  相似文献   

3.
横岗水库浮游植物种类组成与时空分布   总被引:1,自引:0,他引:1  
林娴  陈绵润  韩博平 《生态科学》2007,26(4):303-310
于2005年5月和11月调查了横岗水库的水质和浮游植物,对浮游植物群落结构进行了分析.两次采样期间,浮游植物群落数量组成与种类结构发生明显变化.5月份浮游植物平均细胞数量高达275.41×106cells·L-1,平均生物量为31.07mg·L-1;其中优美平裂藻(Oscillatoria.elegans)和银灰平列藻(Oscillatoria.glauca)为绝对优势种,占总细胞数的90%;平裂藻的大量出现导致浮游植物生物量由球体等效半径在10~20μm的种类占主导,但0~5μm区间的小型藻类仍维持较高的生物量.11月份,浮游植物平均细胞数量降低到12.69×106cells·L-1,平均生物量为20.78mg·L-1.蓝藻门有16种,优美平裂藻、银灰平列藻的优势度明显下降;绿藻种类数量增加到48种,在新出现的25个种类中,鼓藻科(Desmidiaceae)、盘星藻属(Pediastrum)和栅藻属(Scenedesmus)有较高的细胞数;优势种类没有变化;大细胞种类的生物量明显增加,特别是等效半径大于20μm的种类.整体上看,浮游植物数量和生物量从河流入水口到大坝处有递减趋势,这种趋势在11月份更为明显,这与采样时期水库水动力过程的梯度相一致.  相似文献   

4.
万峰湖浮游植物群落的时空分布   总被引:4,自引:0,他引:4  
于2009年9月(夏季)和2010年1月(冬季)对万峰湖(水库)的浮游植物群落结构时空分布特征进行研究.在万峰湖共监测到浮游植物49种,其中夏季水库表层(0-10 m)浮游植物优势种为蓝藻门中的拟柱孢藻(Cylindrospermopsis rackiborskii),底层为硅藻门中肘状针杆藻(Synedra ulna)和梅尼小环藻(Cyclotella meneghiniana);在冬季以硅藻门中的小环藻(Cyclotella sp.)和梅尼小环藻为主.夏季,浮游植物表层丰度为13.0×104~54.6×104 cells·L-1,野鸭滩(S2)最高,而以坝艾(S4)浮游植物丰度最低;浮游植物主要集中在表层(0~10 m),以蓝藻组成为主,蓝藻丰度百分数在大坝(S1)最高,达到90.3%,香浓多样性指数夏季高于冬季,夏季表层均匀度指数最低.冬季,浮游植物丰度为17.43×104~25.28×104 cells·L-1,浮游植物主要集中在表层(0~10 m)和中层(10~50 m),水体的各层硅藻所占比例均在90%以上.从浮游植物群落结构和丰度看,万峰湖处于中营养状态,冬季水质好于夏季.夏冬两季浮游植物丰度与水体的温度及水深都表现出了较强的相关关系.  相似文献   

5.
A study aimed at investigating the temporal variation of phytoplankton assemblages in Lake Nyamusingiri was carried out during the period of December 1997–May 1998. Uganda’s freshwaters are ecologically diverse but a few are intensively studied. Research on phytoplankton has been restricted to large water bodies. There is little information on phytoplankton of the western Uganda crater lakes, which are important water and biodiversity resources. This study provided baseline data on phytoplankton, which will serve as a basis for monitoring the effects of human activities on the lake that might result in ecological transformations like loss of biodiversity because of overexploitation. A laboratory thermometer and Winker’s method were used to determine temperature and dissolved oxygen concentration, respectively. Lake transparency was measured by using the Secchi disc. A Van Dorn sampler was used to collect water samples. Nutrient and chlorophyll a concentrations were determined by using facilities at the Fisheries Resources Research Institute (FIRRI), Jinja. The Sedgwick‐Rafter counting chamber was used to analyse phytoplankton. Variation in temperature was small (25.4–26.2°C). Stable thermal stratification was not evident. The Secchi disc transparency was less than unity. The chlorophyll a value was high. Biomass was found to be light‐limited by nonalgal materials. Dissolved oxygen concentration was more than 100% in the surface waters but declined to <20% at the bottom, which reflected the eutrophic nature of the lake. Diversity indices were low. Eighteen species and five classes of phytoplankton were revealed by this study. The phytoplankton flora was dominated by chlorococcal green algae characteristic of the large eutrophic East African lakes.  相似文献   

6.
Recent experimental evidence suggests that changes in the partial pressure of CO2 (pCO2), in concert with nutrient fertilisation, may result in increased primary production and shifted phytoplankton community composition that favours species lacking adaptations to low CO2 environments. It is not clear whether these results apply in ambient freshwaters, which are already often supersaturated in CO2, and where phytoplankton structure and activity are under complex control of diverse local and regional factors. Here, we use a large‐scale comparative study of 69 boreal lakes to explore the influence of existing CO2 gradients (c. 50–2300 μatm) on phytoplankton community composition and biomass production. While community composition did not respond to pCO2 gradients, gross primary production was enhanced, but only in lakes already supersaturated in CO2, demonstrating that environmental context is key in determining pCO2–phytoplankton interactions. We further argue that increased atmospheric CO2 is unlikely to influence phytoplanktonic composition and production in northern lakes.  相似文献   

7.
流溪河水库水动力学对营养盐和浮游植物分布的影响   总被引:33,自引:2,他引:33  
林秋奇  胡韧  韩博平 《生态学报》2003,23(11):2278-2284
流溪河水库2001年年降雨量2250mm,其中79%来自4月至9月的丰水期。入库流量变幅4.25~414.00m^3/s,近60%的入库水量流来自吕田河。流域营养盐输送量取决于流域降雨径流强度,吕田河高于玉溪河。由于营养盐被泥沙吸附沉积,丰水期湖泊区营养盐浓度明显低于河流区。浮游植物密度为17~1245cells/ml,以硅藻为主要优势种群。硅藻密度分布与水流流速和透明度的相关程度明显高于与营养盐和温度的相关程度。在丰水期,由于受水流和透明度的强烈控制,尽管营养盐供应比较充足,硅藻密度处于比较低的水平。丰水期硅藻密度稍低于枯水期,河流区明显低于大坝处。浮游植物香农-威纳多样性指数为0.97~2.75。受水库水动力学(水位波动等因素)的影响,最大浮游植物多样性出现于水位波动比较大的8月份,最小值则出现于水位波动最小的6月份。  相似文献   

8.
飞来峡水库蓄水初期浮游植物组成与数量的变化   总被引:1,自引:0,他引:1  
于2000~2002年的丰水期和枯水期对飞来峡水新建后库的营养状态和浮游植物进行监测。结果表明,水库中氮盐的浓度无显著变化,总磷浓度下降显著。浮游植物优势种类和丰度有较大差异。2000年浮游植物种类为29种,2001和2002年增加到99种;其中以绿藻和硅藻增加的种类数最多,分别增加34和27种。浮游植物丰度为13.4×104~41.6×104cells.L-1,2000年最高,2001年最低。2000年丰水期优势种较为单一,主要以假鱼腥藻(Pseudoanbeanaspp.)为主,枯水期主要是硅藻中的颗粒直链藻(Melosira granulata)丰度较高;2001和2002年丰水期蓝藻、绿藻和硅藻共同占优势,浮游植物无绝对的优势种,蓝藻的相对丰度较高的为假鱼腥藻、蓝纤维藻(Dactylococcopsis acicularis)和粘球藻(Gloeocapsa magma),绿藻的优势种为衣藻(Chlamydomonassp.)和美丽胶网藻(Dictyospharium pul-chellum);硅藻的优势种为梅尼小环藻(Cyclotella menighiniana)和针杆藻(Synedraspp.),枯水期主要是硅藻占优势,优势种为颗粒直链藻、变异直链藻(Melosira varians)等。  相似文献   

9.
The species composition and phytoplankton biomass of Lake Awassa, Ethiopia were studied from September 1985 to July 1986 in relation to some limnological features of the lake. During the study period, three phases of thermal stratification were recognized: a period of unstable stratification and near-complete mixing was followed by a stable stratification period and another period of complete mixing. Complete mixing was associated with cooling of air temperature with an influx of cool rain and high rainfall. The underwater light penetration showed a similar pattern over the whole period with the highest in the red, and the lowest in the blue spectral region. Euphotic depth varied between 1.6 and 3.0 meters with the highest measurements corresponding to the stable stratification period. PO4-P concentrations ranged between 23 and 45 µg l–1 and NO3-N concentrations varied between 7 and 14 µg l–1 during the study period. Both nutrients showed increasing values associated with mixing periods and/or the rainy season.A total of 100 phytoplankton species were identified with 48% of the taxa represented by green algae, 30% by blue-green algae, 11% by diatoms, and the rest by chrysophytes, dinoflagellates, cryptomonads and euglenoids. The dominant phytoplankton species were Lyngbya nyassae, Botryococcus braunii and Microcystis species. Seasonal biomass variation was pronounced in the first two species but not in Mycrocystis. Phytoplankton biomass increased following the mixing period in December, and thermal destratification during May to July which was also a period with high rainfall and relatively high nutrient concentration. While the seasonal variation of the total phytoplankton community in Lake Awassa was relatively low (coefficient of variation < 20%), it was higher in some of the individual component species.  相似文献   

10.
F. Vegter 《Hydrobiologia》1977,52(1):67-71
The Grevelingen estuary was cut off from the sea in May 1971, and changed into stagnat lake Grevelingen. After the closure nitrate concentrations decreased to extremely low values (less than 2 μgat NH3-N/1). Ammonia concentrations varied between 10–30 μgat NH3-N/1, comparable with the situation before the closure. Phosphate concentrations fluctuated between1–2 μgat PO4-P/1 in the estuarine phase, and increased to μgat after the closure, presumably caused by decomposition of biological material and release of phosphates from the bottom. Phytoplankton primary production was not markedly affected by the damming up, and amounted to 175 g C/m2 in 1971. Communication no. 147 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands  相似文献   

11.
Bukaveckas  Paul A.  Crain  Angela S. 《Hydrobiologia》2002,481(1-3):19-31
We characterize seasonal and spatial patterns in phytoplankton abundance, production and nutrient limitation in a mesotrophic river impoundment located in the southeastern United States to assess variation arising from inter-annual differences in watershed inputs. Short-term (48 h) in situ nutrient addition experiments were conducted between May and October at three sites located along the longitudinal axis of the lake. Nutrient limitation was detected in 12 of the 18 experiments conducted over 2 years. Phytoplankton responded to additions of phosphorus alone although highest chlorophyll concentrations were observed in enclosures receiving combined (P and N) additions. Growth responses were greatest at downstream sites and in late summer suggesting that those populations experience more severe nutrient limitation. Interannual variation in nutrient limitation and primary production corresponded to differences in the timing of hydrologic inputs. Above average rainfall and discharge in late-summer (July–October) of 1996 coincided with higher in-lake nutrient concentrations, increased production, and minimal nutrient limitation. During the same period in 1995, discharge was lower, nutrient concentrations were lower, and nutrient limitation of phytoplankton production was more pronounced. Our results suggest that nutrient limitation is common in this river impoundment but that modest inter-annual variability in the timing of hydrologic inputs can substantially influence seasonal and spatial patterns.  相似文献   

12.
Primary productivity of the phytoplankton was evaluated by the 14C and dissolved oxygen methods in December 1981 at the Barra Bonita Reservoir (São Paulo State, Brazil). The primary production varied between 0.17 to 14.51 mg C m−3h−1 at 4 and 0 m depth, respectively. About 57 to 94% of the photosynthetic activity was due to phytoplankton > 50 μm. The highest value of assimilation rate (3.36 mg C mg Chl−1h−1) was found in the surface water. Dissolved nutrient concentrations were very high and consisted mainly of nitrate. Light penetration was low, the aphotic zone accounting for about 90% of the water column. Enrichment with nitrate and phosphate showed that both N and P stimulated the production of biomass (chlorophyll a), mainly due to the addition of phosphate. The enrichment experiment also indicated that phosphate addition has a significant stimulatory effect on the growth of Melosira sp. The limiting effect of light penetration on photosynthetic activity is more severe than that of nutrients.  相似文献   

13.
Water chemistry of Lake Kalgaard in 1976–77 was characterized by low concentrations of total-CO2 and inorganic nutrients. The ionic composition resembled that of precipitation (Na>Ca>Mg >K and Cl>SO4>HCO3). The seasonal pattern of total-CO2 and PO4 was regulated by internal processes and maximum concentrations as a result of decomposition processes occurred during summer stagnation. NO3 concentrations showed the opposite pattern and were relatively high from late autumn through spring and were extremely low during summer. Total-P and PO4 increased during summer due to release from the sediment. The phytoplankton biomass of surface water was low. The water chemistry suggested a shift from N-limitation of phytoplankton during summer to P-limitation at other seasons. Maximum algal concentrations occurred at 6 m during summer, probably due to a supply of nutrients (especially NH4) from deeper layers. Phytoplankton productivity was often bimodal, with an upper maximum at depths of 0 or 2 m and a second maximum at 6 m.  相似文献   

14.
为了探究浙南地区山区水库浮游植物群落结构的季节变化及水质状况,于2019年2月-2020年1月对位于温州大罗山天河水库的浮游植物群落结构和水体理化因子进行了调查分析.结果 表明:天河水库浮游植物隶属于7门60属89种,全年浮游植物平均丰度为2.02×105 cells·L-1,年均生物量为0.26 mg·L-1.硅藻门...  相似文献   

15.
Determination of phytoplankton losses by comparing net and gross growth   总被引:1,自引:1,他引:0  
By comparing primary production (14C) and biomass variation it is possible to calculate the total losses of phytoplankton. For the mesotrophic drinking water reservoir Saidenbach, average loss rates of -0.31 d-1 for the total phytoplankton and -0.99 d-1 for nanoplankton were determined from September 1980 to May 1981. The greater the share of nanoplankton in the total phytoplankton, the less the real activity as reflected in biomass changes observed. The considerable (mainly nanoplankton) losses, however, cannot be explained by grazing or sedimentation. They are assumed to be caused by high mortality of flagellates due to a relatively high depth of mixing and their retention in the aphotic layer.  相似文献   

16.
Waigani Lake, near Port Moresby, Papua New Guinea and Barton Broad, Norfolk, England are both shallow lakes nutrient-enriched from sewage effluent disposal. In Waigani Lake phytoplankton biomass varied seasonally with lower levels (100-200 mg chlorophyll α m−3) during the wet season increasing to over 400 mg chlorophyll α m−3 at the end of the dry season. Secchi disc depths varied between 0. 11 and 0. 34 m. Phytoplankton productivity in Waigani Lake was very high throughout the year (range: Amax 4,370-21,000 mg O2 m−3 h−1) but production was lower during the wet season (range: Amax 4,370-12,700 mg O2 m−3 h−1). High surface productivity was recorded from August to December except on sampling days when the weather was overcast. Productivity throughout the year declined rapidly with depth. Algal biomass in Barton Broad varied from 3-10 mg chlorophyll α m−3 in winter but increased in spring and was very high in summer (200-500 mg chlorophyll α m−3). Secchi disc depth varied from 0.21 m in August 1976 to 1.76 m in December. Phytoplankton production in Barton Broad was low in winter (range: Amax 247-1,250 mg O2 m−3 h−1) but increased markedly in spring and summer with the highest rate (Amax 6,850 mg O2 m−3 h−1) being recorded in August. Surface inhibition was observed during summer except when the weather was overcast. Seasonality in nutrients and phytoplankton in Waigani Lake appear to be related to rainfall. Nutrient concentrations in Barton Broad are more closely related to phytoplankton activity which, in turn, correlates with seasonality in solar radiation.  相似文献   

17.
Abiotic factors and primary production by phytoplankton and microphytobenthos was studied in the turbid Westeschelde estuary. Because of the high turbidity and high nutrient concentrations primary production by phytoplankton is light-limited. In the inner and central parts of the estuary maximum rates of primary production were therefore measured during the summer, whereas in the more marine part spring and autumn bloom were observed. Organic loading is high, causing near anaerobic conditions upstream in the river Schelde. Because of this there were no important phytoplankton grazers in this part of the estuary and hence the grazing pressure on phytoplankton was minimal. As this reduced losses, biomass is maximal in the river Schelde, despite the very low growth rates.On a number of occasions, primary production by benthic micro-algae on intertidal flats was studied. Comparison of their rates of primary production to phytoplankton production in the same period led to the conclusion that the contribution to total primary production by benthic algae was small. The main reason for this is that the photosynthetic activity declines rapidly after the flats emerged from the water. It is argued that CO2-limitation could only be partially responsible for the noticed decrease in activity.  相似文献   

18.
广东省典型水库浮游植物群落特征与富营养化研究   总被引:19,自引:6,他引:19  
王朝晖  韩博平  胡韧  林秋奇 《生态学杂志》2005,24(4):402-405,409
研究了广东省19座主要水库2000年丰水期和枯水期浮游植物状况,并根据浮游植物群落结构和多样性指数对水库进行营养状况评价。结果表明,东江流域的新丰江和白盘珠水库水质良好,属于贫营养型水库;大部分水库为中营养型,而鹤地、契爷石和石岩这3座位于沿海经济发达地区水库属于富营养型。流域上游水库水质明显优于下游水库,山区水库水质优于沿海水库,东江流域水库水质普遍较好。北江流域次之,而粤西沿海和珠江三角洲地区各水库均受到不同程度的污染。  相似文献   

19.
The effects of enrichment with phosphate (0–500 µg. 1–1) and forms of nitrogen (nitrate, nitrite, ammonia an and urea) (0–3500 µgg. –1) on the phytoplankton growth of Lobo Reservoir (Brazil) were studied in July, 1979. Suspended matter, chlorophyll a, cell concentrations and the carotenoid:cchlorophyll ratio were estimated following 14 days of in situ incubation. Phosphate alone caused no significant effects, but enrichment with nitrogen caused a substantial increase on the growth of phytoplankton. Comparison between the different forms of nitrogen showed insignificant effects after their additions with 350 µg. –1 and in combination with phosphate. However, when nitrogen was added in large quantities (3 500 µg. –1), significant differences between the nitrogeneous forms were found, with urea causing the strongest effect. In July, nitrogen is mhe main limiting nutrient to phytoplankton growth of Lobo Reservoir.Supported by CNPq and FAPESP.  相似文献   

20.
Max M. Tilzer 《Hydrobiologia》1989,173(2):135-140
An array of factors simultaneously controls phytoplankton photosynthesis and hence the primary production process. Because their relative importance shifts both with depth and with season, the significance of individual factors cannot be resolved by in situ incubations, even if all relevant environmental and biotic variables are measured.Here a procedure is described by which in addition to in situ measurements, photosynthesis is simultaneously assessed in identical subsamples under constant temperature (10 °C) and light (0.66 mol m–2 h–1 PAR conditions, in vitro). By calculating photosynthesis per unit of chlorophyll, effects of shifting biomass on photosynthesis can be eliminated but seasonal variations of light-saturated photosynthesis generated by temperature, and vertical changes of light-requirements (e.g. by light-shade adaptation) remain obscure. Quotients of in situ photosynthetic rates divided by in vitro rates allow the quantification of light-mediated changes. Provided that photosynthesis measured in vitro is light-saturated, quotients in situ: in vitro rates should never exceed unity. They are a measure for the degree of light-limitation. In vitro rates normalized to chlorophyll give information on temporal changes caused by variations in photosynthetic capacity. In Lake Constance, mean cell size appears to control light-saturated assimilation numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号