首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

2.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

3.
The organ distribution of rat histidine-pyruvate aminotransferase isoenzymes 1 and 2 was examined by using an isoelectric-focusing technique. Isoenzyme 1 (pI8.0) is present only in the liver and its activity is increased by the injection of glucagon, whereas isoenzyme 2 (pI5.2) is distributed in all tissues (liver, kidney, brain and heart) tested, and is not affected by glucagon injection. Isoenzyme 2 of the liver, kidney, brain and heart was purified by the same procedure and characterized. Isoenzyme 2 preparations from these four tissues were nearly identical in physical and enzymic properties. These properties differed from those previously found for the highly purified isoenzyme 1 preparation of rat liver. Isoenzyme 2 was active with pyruvate but not with 2-oxoglutarate as amino acceptor. Amino donors were effective in the following order of activity: tyrosine greater than histidine greater than phenylalanine greater than kynurenine greater than tryptophan. Very little activity was found with 5-hydroxytryptophan. The apparent Km for histidine was about 0.45 mM. The Km for pyruvate was about 4.5 mM with histidine as amino donor. The amino-transferase activities of isoenzyme 2 towards phenylalanine and tyrosine were inhibited by histidine. The ratio of aminotransferase activities towards these three amino acids was constant through gel filtration, electrophoresis, isoelectric focusing and sucrose-density-gradient centrifugation of the purified isoenzyme 2 preparations. These results suggest that these three activities are properties of the same enzyme protein. Sephadex G-150 gel filtration and sucrose-density-gradient centrifugation yielded mol.wts. of approx. 95000 and 92000 respectively. The pH optimum was between 9.0 and 9.3.  相似文献   

4.
Pyruvate (glyoxylate) aminotransferase from rat liver peroxisomes was highly purified and characterized. The enzyme preparation has a mol.wt. of approx. 80,000 with two identical subunits, and isoelectric point of 8.0 and a pH optimum between 8.0 and 8.5. The enzyme catalysed transamination between a number of L-amino acids and pyruvate or glyoxylate. The effective amino acceptors were pyruvate, phenylpyruvate and glyoxylate with serine, and glyoxylate and phenylpyruvate with alanine as amino donor. These properties and kinetic parameters of the enzyme are remarkably similar to those previously described for mitochondrial alanine-glyoxylate aminotransferase isoenzyme 1 from glucagon-injected rat liver [Noguchi, Okuno, Takada, Minatogawa, Okai & Kido (1978, Biochem. J. 169, 113-122].  相似文献   

5.
1. Serine-pyruvate aminotransferase was purified from mouse, rat, dog and cat liver. Each enzyme preparation was homogeneous as judged by polyacrylamide-disc-gel electrophoresis in the presence of sodium dodecyl sulphate. However, isoelectric focusing resulted in the detection of two or more active forms from enzyme preparations from dog, cat and mouse. A single active form was obtained with the rat enzyme. All four enzyme preparations had similar pH optima and molecular weights. 2. Both mouse and rat preparations catalysed transamination between a number of L-amino acids (serine, leucine, asparagine, methionine, glutamine, ornithine, histidine, phenylalanine or tyrosine) and pyruvate. Effective amino acceptors were pyruvate, phenylpyruvate and glyoxylate with serine as amino donor. The reverse transamination activity, with hydroxypyruvate and alanine as subtrates, was lower than with serine and pyruvate for both species. Serine-pyruvate aminotransferase activities were inhibited by isonicotinic acid hydrazide. 3. In contrast, both dog and cat enzyme preparations were highly specific for serine as amino donor with pyruvate, and utilized pyruvate and glyoxylate as effective amino acceptors. A little activity was detected with phenylpyruvate. The reverse activity was higher than with serine and pyruvate for both species. Serine-pyruvate amino-transferase activities were not inhibited by isonicotinic acid hydrazide.  相似文献   

6.
Tryptophan aminotransferase was purified from rat brain extracts. The purified enzyme had an isoelectric point at pH 6.2 and a pH optimum near 8.0. On electrophoresis the enzyme migrated to the anode. The enzyme was active with oxaloacetate or 2-oxoglutarate as amino acceptor but not with pyruvate, and utilized various L-amino acids as amino donors. With 2-oxoglutarate, the order of effectiveness of the L-amino acids was aspartate > 5-hydroxytryptophan > tryptophan > tyrosine > phenylalanine. Aminotransferase activity of the enzyme towards tryptophan was inhibited by L-glutamate. Sucrose density gradient centrifugation gave a molecular weight of approx. 55,000. The enzyme was present in both the cytosol and synaptosomal cytosol, but not in the mitochondria. The isoelectric focusing profile of tryptophan: oxaloacetate aminotransferase activity was identical with that of L-aspartate: 2-oxoglutarate aminotransferase (EC 2.6.1.1) activity, with both subcellular fractions. On the basis of these data, it is suggested that the enzyme is identical with the cytosol aspartate: 2-oxoglutarate aminotransferase.  相似文献   

7.
Two enzymes which transaminate tyrosine and phenylalanine in Bacillus subtilis were each purified over 200-fold and partially characterized. One of the enzymes, termed histidinol phosphate aminotransferase, is also active with imidazole acetyl phosphate as the amino group recipient. Previous studies have shown that mutants lacking this enzyme require histidine for growth. Mutants in the other enzyme termed aromatic aminotransferase are prototrophs. Neither enzyme is active on any other substrate involved in amino acid synthesis. The two enzymes can be distinguished by a number of criteria. Gel filtration analysis indicate the aromatic and histidinol phosphate aminotransferases have molecular weights of 63,500 and 33,000, respectively. Histidinol phosphate aminotransferase is heat-sensitive, whereas aromatic aminotransferase is relatively heat-stable, particularly in the presence of alpha-ketoglutarate. Both enzymes display typical Michaelis-Menten kinetics in their rates of reaction. The two enzymes have similar pH optima and employ a ping-pong mechanism of action. The Km values for various substrates suggest that histidinol phosphate aminotransferase is the predominant enzyme responsible for the transamaination reactions in the synthesis of tyrosine and phenylalanine. This enzyme has a 4-fold higher affinity for tyrosine and phenylalanine than does the aromatic aminotransferase. Competitive substrate inhibition was observed between tyrosine, phenylalanine, and histidinol phosphate for histidinol phosphate aminotransferase. The significance of the fact that an enzyme of histidine synthesis plays an important role in aromatic amino acid synthesis is discussed.  相似文献   

8.
Phenylalanine pyruvate aminotransferase in rat liver was found in both the mitochondrial and supernatant fractions. Phenylalanine pyruvate aminotransferase was purified from rat liver mitochondria. The purified enzyme was specific for pyruvate, exhibiting no activity with 2-oxoglutarate as aminoacceptor, and utilized a wide range of amino acids as amino donors. Amino acids were effective in the following order of activity: L-phenylalanine > L-tyrosine > L-histidine > 3,4-dihydroxy-DL-phenylalanine. Very little activity was observed with L-tryptophan and 5-hydroxy-L-tryptophan. The apparent Km values for L-phenylalanine and L-histidine were 2.6 mM and 2.7 mM, respectively. The Km values for pyruvate were 5.0 mM and 1.5 mM with phenylalanine and histidine as amino donors, respectively. The pH optimum was near 9.0. Sucrose density gradient centrifugation gave a molecular weight of approximately 68,000. On the basis of subcellular distributions, substrate specificities, substrate inhibition, pH optima, polyacrylamide gel electrophoresis and some other properties, it was suggested that mitochondrial phenylalanine pyruvate aminotransferase was identical with mitochondrial histidine pyruvate aminotransferase.  相似文献   

9.
Euglena contains glutamate:glyoxylate aminotransferase (GGT) both in mitochondria and in cytosol. Both isoforms were separated from each other by DEAE-cellulose chromatography. The mitochondrial enzyme had an apparent Km of 1.9 mM for glutamate and the cytosolic enzyme 52.6 mM. Mitochondrial GGT was further purified by ammonium sulfate fractionation, isoelectric focusing, and gel chromatography. It had a molecular weight of 141,000 and an isoelectric point of pH 4.88; the optimum pH was 8.5. Its apparent Km values for glutamate and for glyoxylate were 2.0 and 0.25 mM, respectively. In addition to glutamate, mitochondrial GGT used 5-hydroxytryptophan, tryptophan, and cysteine as amino donors in the transamination to glyoxylate. Alanine did not support the activity. The relative activity of the enzyme for amino acceptors on the transamination from glutamate was 4-hydroxyphenylpyruvate greater than phenylpyruvate greater than glyoxylate greater than hydroxypyruvate. Pyruvate and 2-oxoglutarate were not used in the reaction. Evidence that GGT functions mainly in the irreversible transamination between glutamate and glyoxylate is presented. The functional significance of GGT in the glycolate pathway of Euglena is also discussed.  相似文献   

10.
The most abundant aromatic amino acid aminotransferase of Rhizobium leguminosarum biovar trifolii was partially purified. The molecular mass of the enzyme was estimated to be 53 kDa by gel filtration. The enzyme transaminated aromatic amino acids and histidine. It used aromatic keto acids and alpha-ketoglutaric and oxalacetic acids as amino-group acceptors. The optimum temperature was 35 degrees C. Using phenylalanine and alpha-ketoglutaric acid as substrates the activation energy was 46.2 kJ.mol-1 and for the couple tryptophan:alpha-ketoglutaric acid it was 70.3 kJ.mol-1. The optimum pH was different for each substrate: 7.3 for phenylalanine, 7.9 for histidine and 8.7 for tryptophan.  相似文献   

11.
Kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase were co-purified and crystallized as yellow cubes from human liver particulate fraction. The crystalline enzyme was homogeneous by the criteria of electrophoresis, isoelectric focusing, gel filtration, sucrose-density-gradient centrifugation and analytical ultracentrifugation. The molecular weight of the enzyme was calculated as approx. 90000, 89000 and 99000 by the use of gel filtration, analytical ultracentrifugation and sucrose-density-gradient centrifugation respectively, with two identical subunits. The enzyme has a s20,w value of 5.23S, an isoelectric point of 8.3 and a pH optimum between 9.0 and 9.5. The enzyme solution showed absorption maxima at 280 and 420nm. The enzyme catalysed transamination between several l-amino acids and pyruvate or glyoxylate. The order of effectiveness of amino acids was alanine>serine>glutamine>glutamate>methionine>kynurenine = phenylalanine = asparagine>valine>histidine>lysine>leucine>isoleucine>arginine>tyrosine = threonine>aspartate, with glyoxylate as amino acceptor. The enzyme was active with glyoxylate, oxaloacetate, hydroxypyruvate, pyruvate, 4-methylthio-2-oxobutyrate and 2-oxobutyrate, but showed little activity with phenylpyruvate, 2-oxoglutarate and 2-oxoadipate, with kynurenine as amino donor. Kynurenine–glyoxylate aminotransferase activity was competitively inhibited by the addition of l-alanine or l-serine. From these results we conclude that kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase activities of human liver are catalysed by a single protein. Kinetic parameters for the kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase, serine–pyruvate aminotransferase and alanine–hydroxypyruvate aminotransferase reactions of the enzyme are presented.  相似文献   

12.
The quantitative importance of the individual steps of aromatic amino acid metabolism in rat liver was determined by calculation of the respective Control Coefficients (Strengths). The Control Coefficient of tryptophan 2,3-dioxygenase for tryptophan degradation was determined in a variety of physiological conditions and with a range of activities of tryptophan 2,3-dioxygenase. The Control Coefficient varied from 0.75 with basal enzyme activity to 0.25 after maximal induction of the enzyme by dexamethasone. The remainder of the control for tryptophan degradation was associated with the transport of the amino acid across the plasma membrane, with only very small contributions from kynureninase and kynurenine hydroxylase. The Control Coefficients of tyrosine aminotransferase for tyrosine degradation were approx. 0.70 and 0.20 with basal and dexamethasone-induced tyrosine aminotransferase activities respectively; the Control Coefficients of the transport of the amino acid into the cell were 0.22 and 0.58 respectively. Phenylalanine hydroxylase was found to have a Control Coefficient for the degradation of phenylalanine of approx. 0.50 under conditions of basal enzyme activity; after maximal activation by glucagon, the Control Coefficient decreased to 0.12. The transport of phenylalanine was responsible for the remaining control in the pathway. These results have important implications, directly for the regulation of aromatic amino acid metabolism in the liver, and indirectly for the regulation of neuroamine synthesis in the brain.  相似文献   

13.
Aromatic amino acid transaminase in rat intestine   总被引:3,自引:3,他引:0  
The transamination of aromatic l-amino acids (5-hydroxytryptophan, tryptophan, tyrosine, phenylalanine and kynurenine) was shown to be catalysed by enzyme preparations from rat small intestine. On the basis of the partial purification and characterization of these aromatic amino acid transaminases, it is suggested that rat small intestine contains several kinds of aromatic amino acid transaminases.  相似文献   

14.
After cortisone injection, virtually identical increases in rat liver cytosol alanine-2-oxoglutarate aminotransferase and glutamate-glyoxylate aminotransferase activities were observed. The two activities were co-purified to homogeneity from rat liver cytosol. The purified enzyme was specific for L-alanine with 2-oxoglutarate as amino acceptor. With glyoxylate, however, the enzyme utilized various L-amino acids as amino donors in the following order of activity: glutamate greater than alanine greater than glutamine greater than methionine. The ratio of alanine-2-oxoglutarate aminotransferase activity to glutamate-glyoxylate aminotransferase activity remained constant during purification and was unchanged by a variety of treatments of the purified enzyme. These results suggest that glutamate-glyoxylate aminotransferase is identical with alanine-2-oxoglutarate aminotransferase. Evidence was obtained that the two enzyme activities in the cytosol of dog, cat and human liver are also properties of the same protein.  相似文献   

15.
Liver cells from fed Sprague-Dawley rats metabolized phenylalanine, tyrosine and tryptophan at rates consistent with the known kinetic properties of the first enzymes of each pathway. Starvation of rats for 48 h did not increase the maximal activities of phenylalanine hydroxylase, tryptophan 2,3-dioxygenase and tyrosine aminotransferase in liver cell extracts, when results were expressed in terms of cellular DNA. Catabolic flux through the first two enzymes was unchanged; that through the aminotransferase was elevated relatively to enzyme activity. This is interpreted in terms of changes in the concentrations of 2-oxoglutarate and glutamate. Cells from tryptophan-treated animals exhibited significant increases in the catabolism of tyrosine and tryptophan, but not of phenylalanine. The activities of tyrosine aminotransferase and tryptophan 2,3-dioxygenase were also increased, although the changes in flux and enzyme activity did not correspond exactly. These results are discussed with reference to the control of aromatic amino acid catabolism in liver; the role of substrate concentration is emphasized.  相似文献   

16.
1. The distribution of l-alanine-glyoxylate aminotransferase activity between subcellular fractions prepared from rat liver homogenates was investigated. The greater part of the homogenate activity (about 80%) was recovered in the ;total-particles' fraction sedimented by high-speed centrifugation and the remainder in the cytosol fraction. 2. Subfractionation of the particles by differential sedimentation and on sucrose density gradients revealed a specific association between the aminotransferase and the mitochondrial enzymes glutamate dehydrogenase and rhodanese. 3. The aminotransferase activities in the cytosol and the mitochondria are due to isoenzymes. The solubilized mitochondrial enzyme has a pH optimum of 8.6, an apparent K(m) of 0.24mm with respect to glyoxylate and is inhibited by glyoxylate at concentrations above 5mm. The cytosol aminotransferase shows no distinct pH optimum (over the range 7.0-9.0) and has an apparent K(m) of 1.11mm with respect to glyoxylate; there is no evidence of inhibition by glyoxylate. 4. The mitochondrial location of the bulk of the rat liver l-alanine-glyoxylate aminotransferase activity is discussed in relation to a pathway for gluconeogenesis involving glyoxylate.  相似文献   

17.
Tryptophan contents of liver, serum and kidney were determined in normal and vitamin-B-6-deficient rats after tryptophan injection. Tryptophan contents of normal and B-6-deficient liver were different, but not those in serum and kidney. Both kynurenine and 3-hydroxykynurenine accumulated in B-6-deficient liver more than in the normal. The 3-hydroxykynurenine contents after tryptophan injection (30 mg/100 g body wt.) increased to 1380 nmol/g of liver at 1-1.5 h, a value sufficient to produce xanthurenate, in view of the Km value of kynurenine aminotransferase. The enzymes metabolizing kynurenine were assayed at various times after tryptophan injection. The activity of kynureninase holoenzyme in B-6-deficient liver was much decreased, but the activity of total enzyme was not changed. It appeared that a high dose of tryptophan in B-6-deficient rats could cause a greater deficiency of pyridoxal 5-phosphate. Tryptophan metabolism in B-6-deficient rat liver after tryptophan administration is discussed.  相似文献   

18.
Hepatic phenylalanine(histidine):pyruvate aminotransferase activity is much higher in the mouse and rat than in other animal species (human, guinea-pig, rabbit, pig, dog and chicken). The activity is elevated in the mouse and rat by the injection of glucagon but not in other species (guinea-pig, rabbit and chicken). The enzyme was purified from the mitochondrial fraction of mouse liver to homogeneity as judged by polyacrylamide disc gel electrophoresis in the presence of dodecylsulphate. With histidine as amino donor, the enzyme was active with pyruvate, oxaloacetate and hydroxypyruvate as amino acceptors but not with 2-oxoglutarate. Effective amino donors were histidine, phenylalanine and tyrosine with pyruvate, and methionine, serine and glutamine with phenylpyruvate. The apparent Km for histidine was about 6.9 mM with pyruvate and that for pyruvate was 21 mM with histidine. The enzyme is probably composed of two identical subunits with a molecular weight of approximately 40000. The pH optimum was near 9.0. Isoelectric focusing of the purified enzyme resulted in the detection of four forms with pI 6.0, 6.2, 6.5 and 6.7, respectively, all of which were responsive to glucagon. These four forms were nearly identical with the purified enzyme before the focusing with respect to physical and enzymic properties. A possible mechanism of this multiplicity is discussed.  相似文献   

19.
We describe the complete purification of aromatic aminotransferase I, the enzyme responsible for the ability of Klebsiella aerogenes to use tryptophan and phenylalanine as sole sources of nitrogen, as well as the partial purification of aromatic aminotransferase IV. An examination of the properties of these enzymes revealed that aminotransferase I had much greater affinity for the aromatic amino acids than aminotransferase IV, explaining the essential role of aminotransferase I in the utilization of exogenously supplied aromatic amino acids. The properties of aminotransferase IV suggest that this enzyme is actually an aspartate aminotransferase (EC 2.6.1.1), corresponding to the product of the aspC gene of Escherichia coli.  相似文献   

20.
Abstract— Mitochondrial and cytoplasmic forms of aspartate aminotransferase were purified from rat brain homogenates and tested for their ability to catalyze transamination of various aromatic amino acids. The mitochondrial enzyme exhibited activity toward tyrosine and phenylalanine with 2-oxoglutar-ate as acceptor, although the specific activities were less than 1% of the corresponding aspartate activity when all substrates were 10 mM. Even less activity was seen with DOPA, 5-hydroxytryptophan and tryptophan. The cytoplasmic aspartate aminotransferase was active toward tryptophan, 5-hydroxytryptophan and DOPA, but these transaminations were favored by pyruvate or oxaloacetate rather than 2-oxoglutarate as keto acid. Based on co-migration of aromatic activities with the respective aspartate aminotransferases during isoelectric focusing and based on equal sensitivities of aromatic transamination and aspartate transamination to inhibition by vinylglycine, it was concluded that all activities resided in the aspartate aminotransferase enzymes. Some doubt exists, however, as to the physiological significance of these alternate activities in view of the requirement that aromatic amino acids must compete with aspartate for transamination by these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号