首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homobasidiomycete Schizophyllum commune encodes a multiallelic pheromone receptor system that distinguishes more than 20 nonself from at least 2 self pheromones. The well-investigated pheromone response system of the yeast Saccharomyces cerevisiae was used to link the FUS1::lacZ reporter system to the heterologous pheromone receptors from S. commune. To investigate yeast G-protein binding, the unchanged heterologous receptor was compared to constructs carrying an exchange of the 3rd cytoplasmatic loop for the Ste2 sequence. A better coupling could be achieved with the altered constructs. In order to examine activation by single pheromones, an artificial peptide based on the sequence of a new putative pheromone gene, bap2(1), in the Balpha2 mating-type locus encoding the shortest pheromone found so far in fungal mating types was used. Thus, we have reassembled the pheromone recognition of the basidiomycete S. commune and constructed a system ideal for specificity analysis in the yeast S. cerevisiae.  相似文献   

2.
Schizophyllum commune has thousands of mating types defined in part by numerous lipopeptide pheromones and their G-protein-coupled receptors. These molecules are encoded within multiple versions of two redundantly functioning B mating-type loci, B alpha and B beta. Compatible combinations of pheromones and receptors, produced by individuals of different B mating types, trigger a pathway of fertilization required for sexual development. Analysis of the B beta 2 mating-type locus revealed a large cluster of genes encoding a single pheromone receptor and eight different pheromones. Phenotypic effects of mutations within these genes indicated that small changes in both types of molecules could significantly alter their specificity of interaction. For example, a conservative amino acid substitution in a pheromone resulted in a gain of function toward one receptor and a loss of function with another. A two-amino-acid deletion from a receptor precluded the mutant pheromone from activating the mutant receptor, yet this receptor was activated by other pheromones. Sequence comparisons provided clues toward understanding how so many variants of these multigenic loci could have evolved through duplication and mutational divergence. A three-step model for the origin of new variants comparable to those found in nature is presented.  相似文献   

3.
In the homobasidiomycete Schizophyllum commune the mating type genes of the B locus encode pheromones and pheromone receptors in multiple allelic specificities. Interaction of non-self pheromones and receptors leads to induction of B-regulated development easily scored in S. commune by the "flat" phenotype which lacks aerial mycelium formation and shows aberrant hyphal morphology. In contrast, self pheromones are not recognized and B-regulated development is not induced. Natural and mutant alleles of receptors have been analyzed for their specificity in transformation assays, and parts of the receptor involved in ligand discrimination can be described. The biological role of pheromone response in S. commune is assumed to be connected to nuclear migration based on the observation that wild-type cells with a receptor gene of different specificity lead to cells capable of nuclear uptake. Other possible roles for pheromone function are discussed.  相似文献   

4.
Fowler TJ  Mitton MF 《Genetics》2000,156(4):1585-1594
Two copies of scooter, a DNA-mediated transposon in the basidiomycetous fungus Schizophyllum commune, were characterized. Scooter is the first transposon isolated from S. commune. Scooter creates 8-bp target site duplications, comparable to members of the hAT superfamily, and has 32-bp terminal inverted repeats. Both copies of scooter are nonautonomous elements capable of movement. Southern blot hybridizations show that scooter-related sequences are present in all S. commune strains tested. Scooter-1 was identified initially as an insertion in the Bbeta2 pheromone receptor gene, bbr2, leading to a partial defect in mating. Scooter-2 spontaneously disrupted a gene to produce the frequently occurring morphological mutant phenotype known as thin. The scooter-2 insert permitted cloning of the disrupted gene, thn1, which encodes a putative regulator of G protein signaling (RGS) protein. Spontaneous insertion of scooter into genes with identifiable mutant phenotypes constitutes the first evidence of active transposition of a DNA-mediated transposon in a basidiomycete.  相似文献   

5.
Analysis of the multispecific B alpha mating-type locus of Schizophyllum commune provided evidence that pheromones and pheromone receptors govern recognition of self versus non-self and sexual development in this homobasidiomycetous fungus. Four subclones of an 8.2 kb genomic fragment carrying B alpha 1 specificity induced B-regulated sexual morphogenesis when introduced into a strain with one of the eight compatible B alpha specificities that are known to exist in nature. One of these clones, which activated all other B alpha specificities, contains a gene termed bar1. The predicted protein product of bar1, as well as that of bar2, a homologous gene isolated from a B alpha 2 strain, has significant homology to known fungal pheromone receptor proteins in the rhodopsin-like superfamily of G protein-linked receptors. The other three active B alpha 1 clones were subcloned further to identify the minimal active element in each clone. Every active subclone contains a putative pheromone gene ending in a signal for possible isoprenylation. A message of approximately 600 bp was observed for one of these genes, bap1(1). This paper presents the first evidence for a system of multiple pheromones and pheromone receptors as a basis for multispecific mating types in a fungus.  相似文献   

6.
7.
The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of and subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the sublocus, but unlike the multiallelic sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.  相似文献   

8.
The genes defining multiple B mating types in the wood-rotting mushroom Schizophyllum commune are predicted to encode multiple pheromones and pheromone receptors. These genes are clustered in each of two recombinable and independently functioning loci, Bα and Bβ. A difference in specificity at either locus between a mated pair of individuals initiates an identical series of events in sexual morphogenesis. The Bα1 locus was recently found to contain genes predicted to encode three lipopeptide pheromones and a pheromone receptor with a seven-transmembrane domain. These gene products interact in hetero-specific pairs, the pheromone of one Bα specificity with the receptor of any one of the other eight Bα specificities, and are likely to activate a signaling cascade similar to that known for mating in Saccharomyces cerevisiae. We report here that the Bβ1 locus also contains at least three pheromone genes and one pheromone receptor gene, which function similarly to the genes in the Bα1 locus, but only within the series of Bβ specificities. A comparison of the DNA sequences of the Bα1 and Bβ1 loci suggest that each arose from a common ancestral sequence, allowing us to speculate about the evolution of this unique series of regulatory genes.  相似文献   

9.
Kim H  Wright SJ  Park G  Ouyang S  Krystofova S  Borkovich KA 《Genetics》2012,190(4):1389-1404
Here we characterize the relationship between the PRE-2 pheromone receptor and its ligand, CCG-4, and the general requirements for receptors, pheromones, G proteins, and mating type genes during fusion of opposite mating-type cells and sexual sporulation in the multicellular fungus Neurospora crassa. PRE-2 is highly expressed in mat a cells and is localized in male and female reproductive structures. Δpre-2 mat a females do not respond chemotropically to mat A males (conidia) or form mature fruiting bodies (perithecia) or meiotic progeny (ascospores). Strains with swapped identity due to heterologous expression of pre-2 or ccg-4 behave normally in crosses with opposite mating-type strains. Coexpression of pre-2 and ccg-4 in the mat A background leads to self-attraction and development of barren perithecia without ascospores. Further perithecial development is achieved by inactivation of Sad-1, a gene required for meiotic gene silencing. Findings from studies involving forced heterokaryons of opposite mating-type strains show that presence of one receptor and its compatible pheromone is necessary and sufficient for perithecial development and ascospore production. Taken together, the results demonstrate that although receptors and pheromones control sexual identity, the mating-type genes (mat A and mat a) must be in two different nuclei to allow meiosis and sexual sporulation to occur.  相似文献   

10.
本研究结合简并PCR和染色体步行两种方法研究了香菇135菌株的交配型B位点的分子遗传学结构。从135菌株的原生质体单核体1号菌株中获得了1个信息素受体编码基因LErcb1-B1和1个信息素前体编码基因LEphb1-B1。经序列比对分析,香菇的信息素受体LErcb1-B1序列与灰盖鬼伞和裂褶菌的信息素受体之间具有同源性,经SOSUI软件分析该序列具有7次跨膜结构特征。信息素前体LEphb1-B1具有CaaX基序特征。  相似文献   

11.
Cell-cell signaling is an integral part of the sexual and disease cycles of the smut fungi, which must mate to be pathogenic. This study reports the cloning and characterization of the pheromone genes Uhmfa1 and Uhmfa2 from MAT-1 and MAT-2 mating types of U. hordei, respectively, and the pheromone receptor gene Uhpra2 from MAT-2 cells. Similar to other fungal pheromone genes, Uhmfa1 and Uhmfa2 encode precursor peptides. Uhpra2 encodes a protein with sequence similarity to the 7-transmembrane class of G-protein coupled receptors. Deletion of Uhmfa1 and Uhpra1, and their subsequent replacement, confirmed the role of these genes in initiation of the sexual cycle. Uhmfa1 and Uhmfa2 were differentially expressed in various cell types and when opposite mating-type cells were grown together. The predicted mature pheromones of each mating type were synthesized, and each specifically induced conjugation tube formation in cells of the opposite mating type.  相似文献   

12.
Mating in Candida albicans and Saccharomyces cerevisiae is regulated by the secretion of peptide pheromones that initiate the mating process. An important regulator of pheromone activity in S. cerevisiae is barrier activity, involving an extracellular aspartyl protease encoded by the BAR1 gene that degrades the alpha pheromone. We have characterized an equivalent barrier activity in C. albicans and demonstrate that the loss of C. albicans BAR1 activity results in opaque a cells exhibiting hypersensitivity to alpha pheromone. Hypersensitivity to pheromone is clearly seen in halo assays; in response to alpha pheromone, a lawn of C. albicans Deltabar1 mutant cells produces a marked zone in which cell growth is inhibited, whereas wild-type strains fail to show halo formation. C. albicans mutants lacking BAR1 also exhibit a striking mating defect in a cells, but not in alpha cells, due to overstimulation of the response to alpha pheromone. The block to mating occurs prior to cell fusion, as very few mating zygotes were observed in mixes of Deltabar1 a and alpha cells. Finally, in a barrier assay using a highly pheromone-sensitive strain, we were able to demonstrate that barrier activity in C. albicans is dependent on Bar1p. These studies reveal that a barrier activity to alpha pheromone exists in C. albicans and that the activity is analogous to that caused by Bar1p in S. cerevisiae.  相似文献   

13.
14.
A successful mating in the mushroom Coprinus cinereus brings together a compatible complement of pheromones and G-protein-coupled receptors encoded by multiallelic genes at the B mating-type locus. Rare B gene mutations lead to constitutive activation of B-regulated development without the need for mating. Here we characterize a mutation that arose in the B6 locus and show that it generates a mutant receptor with a single amino acid substitution (R96H) at the intracellular end of transmembrane domain III. Using a heterologous yeast assay and synthetic pheromones we show that the mutation does not make the receptor constitutively active but permits it to respond inappropriately to a normally incompatible pheromone encoded within the same B6 locus. Parallel experiments carried out in Coprinus showed that a F67W substitution in this same pheromone enabled it to activate the normally incompatible wild-type receptor. Together, our experiments show that a single amino acid replacement in either pheromone or receptor can deregulate the specificity of ligand-receptor recognition and confer a self-compatible B phenotype. In addition, we use the yeast assay to demonstrate that different receptors and pheromones found at a single B locus belong to discrete subfamilies within which receptor activation cannot normally occur.  相似文献   

15.
The pheromone receptor system of the basidiomycete Schizophyllum commune is capable of ligand discrimination to confer mating specificity. The pheromone receptors of the B alpha locus were investigated for ligand discrimination in a strategy of domain swapping experiments. Several altered phenotypes of chimeric receptors have been found. These include constitutive pheromone receptors which need no ligand for activation of the downstream cascade of events. In addition, receptors still dependent on ligand were identified that had altered pheromone activation profiles, including promiscuous receptors that are activated by pheromones of all nine specificities, including the former self. In addition, highly discriminative receptors were created which are activated by only two of the eight non-self-specificities. The chimeric receptors identify the last third of the receptor as the determinant for B alpha 1 specificity, whereas B alpha 2 specificity resides in noncontiguous domains covering the first and middle parts of the receptor molecule.  相似文献   

16.
The origin of multiple B mating specificities in Coprinus cinereus   总被引:2,自引:0,他引:2       下载免费PDF全文
Riquelme M  Challen MP  Casselton LA  Brown AJ 《Genetics》2005,170(3):1105-1119
Mushrooms, such as Coprinus cinereus, possess large families of pheromones and G-protein-coupled receptors that are sequestered at the B mating-type locus and whose function is to confer vast numbers of different mating types. This ability results from complex patterns of cognate and noncognate pheromone/receptor pairings, which potentially offer a unique insight into the molecular interaction between receptor and ligand. In this study we have identified many more members of these families by molecular analysis of strains collected worldwide. There are three groups of genes at each B locus. We have identified two alleles of group 1, five alleles of group 2, and seven alleles of group 3, encoding in total 14 different receptors and 29 different pheromones. The specificity of many newly identified alleles was determined by transformation analysis. One striking finding was that receptors fall into groups based on sequence homology but these do not correspond to the groups defined by position, indicating that complex evolutionary processes gave rise to the B loci. While additional allelic versions may occur in nature, the number of B specificities possible by combination of the alleles that we describe is 70, close to previous estimates based on population analysis.  相似文献   

17.
The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone-receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone-receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone-receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms.  相似文献   

18.
Candida albicans genes involved in mating have been identified previously by homology to Saccharomyces cerevisiae mating pathway components. The C. albicans genome encodes CaSte2p, a homolog of the S. cerevisiae alpha-mating pheromone receptor Ste2p, and two potential pheromones, alpha-F13 (GFRLTNFGYFEPG) and alpha-F14 (GFRLTNFGYFEPGK). The response of several C. albicans strains to the synthesized peptides was determined. The alpha-F13 was degraded by a C. albicans MTLa strain but not by S. cerevisiae MATa cells. The CaSTE2 gene was cloned and expressed in a ste2-deleted strain of S. cerevisiae. Growth arrest and beta-galactosidase activity induced from a FUS1-lacZ reporter construct increased in a dose-dependent manner upon exposure of transgenic S. cerevisiae to alpha-F13. Mating between the strain expressing CaSTE2 and an opposite mating type was mediated by alpha-F13 and not by the S. cerevisiae alpha-factor. The results indicated that CaSte2p effectively coupled to the S. cerevisiae signal transduction pathway. Functional expression of CaSte2p in S. cerevisiae provides a well-defined system for studying the biochemistry and molecular biology of the C. albicans pheromone and its receptor.  相似文献   

19.
20.
Pheromones trigger filamentous growth in Ustilago maydis.   总被引:10,自引:4,他引:6       下载免费PDF全文
Cell recognition and mating in the smut fungus Ustilago maydis have been proposed to involve specific pheromones and pheromone receptors. The respective structural genes are located in the a mating type locus that exists in the alleles a1 and a2. We demonstrate that binding of pheromone to the receptor can induce a morphological switch from yeast-like to filamentous growth in certain strains. Using this as biological assay we were able to purify both the a1 and a2 pheromone. The structure of the secreted pheromones was determined to be 13 amino acids for a1 and nine amino acids for a2. Both pheromones are post-translationally modified by farnesylation and carboxyl methyl esterification of the C-terminal cysteine. An unmodified a1 peptide exhibits dramatically reduced activity. The pheromone alone is able to induce characteristic conjugation tubes in cells of opposite mating type and confers mating competence; even cells of the same mating type undergo fusion. We discuss the role of pheromones in initiating filamentous growth and pathogenic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号