首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have suggested that aluminium (Al) induces programmed cell death (PCD) in plants. To investigate possible mechanisms, fluorescence techniques were used to monitor the behaviour of mitochondria in vivo, as well as the activation of caspase-3-like activity during protoplast PCD induced by Al. A quick burst of mitochondrial reactive oxygen species (ROS) was detected in Al-treated protoplasts. The mitochondrial swelling and mitochondrial transmembrane potential (MTP) loss occurred prior to cell death. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) retarded mitochondrial swelling and MTP loss. The real-time detection of caspase-3-like activation was achieved by measuring the degree of fluorescence resonance energy transfer (FRET). At 30 min after exposure to Al, caspase-3-like protease activation, indicated by the decrease in the FRET ratio, occurred, taking about 1 h to reach completion in single living protoplasts. The mitochondrial permeability transition pore (MPTP) inhibitor, cyclosporine (CsA) gave significant protection against MTP loss and subsequent caspase-3-like activation. Our data also showed that Al-induced mitochondrial ROS possibly originated from complex I and III damage in the respiratory chain through the interaction between Al and iron-sulphur (Fe-S) protein. Alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, was demonstrated to play protective roles in Al-induced protoplast death. Our results showed that mitochondrial swelling and MTP loss, as well as the generation of mitochondrial ROS play important roles in Al-induced caspase-3-like activation and PCD, which provided new insight into the signalling cascades that modulate Al phytotoxicity mechanism.  相似文献   

2.
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.  相似文献   

3.
Lu H  Wan Q  Wang H  Na X  Wang X  Bi Y 《Physiologia plantarum》2012,144(1):48-58
Narciclasine (NCS) is a plant growth inhibitor isolated from the secreted mucilage of Narcissus tazetta bulbs. It is a commonly used anticancer agent in animal systems. In this study, we provide evidence to show that NCS also acts as an agent in inducing programmed cell death (PCD) in tobacco Bright Yellow-2 (TBY-2) cell cultures. NCS treatment induces typical PCD-associated morphological and biochemical changes, namely cell shrinkage, chromatin condensation and nuclear DNA degradation. To investigate possible signaling events, we analyzed the production of reactive oxygen species (ROS) and the function of mitochondria during PCD induced by NCS. A biphasic behavior burst of hydrogen peroxide (H(2)O(2)) was detected in TBY-2 cells treated with NCS, and mitochondrial transmembrane potential (MTP) loss occurred after a slight increase. Pre-incubation with antioxidant catalase (CAT) and N-acetyl-L-cysteine (NAC) not only significantly decreased the H(2)O(2) production but also effectively retarded the decrease of MTP and reduced the percentage of cells undergoing PCD after NCS treatment. In conclusion, our results suggest that NCS induces PCD in plant cells; the oxidative stress (accumulation of H(2)O(2)) and the MTP loss play important roles during NCS-induced PCD.  相似文献   

4.
Lord CE  Gunawardena AH 《Planta》2011,233(2):407-421
Within plant systems, two main forms of programmed cell death (PCD) exist: developmentally regulated and environmentally induced. The lace plant (Aponogeton madagascariensis) naturally undergoes developmentally regulated PCD to form perforations between longitudinal and transverse veins over its leaf surface. Developmental PCD in the lace plant has been well characterized; however, environmental PCD has never before been studied in this plant species. The results presented here portray heat shock (HS) treatment at 55°C for 20 min as a promising inducer of environmental PCD within lace plant protoplasts originally isolated from non-PCD areas of the plant. HS treatment produces cells displaying many characteristics of developmental PCD, including blebbing of the plasma membrane, increased number of hydrolytic vesicles and transvacuolar strands, nuclear condensation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive nuclei, as well as increased Brownian motion within the vacuole. Results presented here for the first time provide evidence of chloroplasts in the vacuole of living protoplasts undergoing environmentally induced PCD. Findings suggest that the mitochondria play a critical role in the cell death process. Changes in mitochondrial dynamics were visualized in HS-treated cells, including loss of mitochondrial mobility, reduction in ΔΨm, as well as the proximal association with chloroplasts. The role of the mitochondrial permeability transition pore (PTP) was examined by pre-treatment with the PTP agonist cyclosporine A. Overall, HS is depicted as a reliable method to induce PCD within lace plant protoplasts, and proves to be a reliable technique to enable comparisons between environmentally induced and developmentally regulated PCD within one species of plant.  相似文献   

5.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

6.
Luo  Lilan  He  Yajun  Zhao  Yannan  Xu  Qian  Wu  Jian  Ma  Haiyan  Guo  Hongyan  Bai  Lin  Zuo  Jianru  Zhou  Jian-Min  Yu  Hong  Li  Jiayang 《中国科学:生命科学英文版》2019,62(8):991-1002
Reactive oxygen species(ROS) play a crucial role in numerous biological processes in plants, including development, responses to environmental stimuli, and programmed cell death(PCD). Deficiency in MOSAIC DEATH 1(MOD1), a plastid-localized enoyl-ACP reductase essential for de novo fatty acid biosynthesis in Arabidopsis thaliana, leads to the increased malate export from chloroplasts to mitochondria, and the subsequent accumulation of mitochondria-generated ROS and PCD. In this study, we report the identification and characterization of a mod1 suppressor, som592. SOM592 encodes mitochondrion-localized NAD~+ transporter 2(NDT2). We show that the mitochondrial NAD pool is elevated in the mod1 mutant. The som592 mutation fully suppressed mitochondrial NADH hyper-accumulation, ROS production, and PCD in the mod1 mutant, indicating a causal relationship between mitochondrial NAD accumulation and ROS/PCD phenotypes. We also show that in wild-type plants, the mitochondrial NAD+uptake is involved in the regulation of ROS production in response to continuous photoperiod. Elevation of the alternative respiration pathway can suppress ROS accumulation and PCD in mod1, but leads to growth restriction. These findings uncover a regulatory mechanism for mitochondrial ROS production via NADH homeostasis in Arabidopsis thaliana that is likely important for growth regulation in response to altered photoperiod.  相似文献   

7.
Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death   总被引:9,自引:0,他引:9       下载免费PDF全文
Yao N  Greenberg JT 《The Plant cell》2006,18(2):397-411
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events.  相似文献   

8.
The status of mitochondrial permeability transition pore (PTP) and levels of reactive oxygen species (ROS) play key roles in regulating apoptosis in animal cells. To investigate if the PTP and cellular oxidation-reduction state are also involved in salt stress-induced programmed cell death (PCD) in tobacco (Nicotiana tabacum, cultivar BY-2) protoplasts, flow cytometry was used to simultaneously monitor ROS levels, PTP status and PCD. Increased ROS and decreased mitochondrial membrane potential (delta psi(m)) were observed before the appearance of PCD. Pre-treatment with an inhibitor of the PTP opening, cyclosporin A (CsA), effectively retarded the onset of PCD, the delta psi(m) decrease and the ROS content increase. Addition of ascorbic acid (AsA) during the salt stress significantly decreased the percentage of protoplasts undergoing PCD and ROS levels but increased delta psi(m). Hydrogen peroxide effectively induced the appearance of PCD and caused an increase in ROS and a decrease in delta psi(m). Pre-treatment of protoplasts with CsA weakened the effects of H2O2. All these results suggest that the open state of PTP and ROS are necessary elements for salt stress-induced PCD in tobacco protoplasts. The open states of PTP and ROS could promote each other suggesting that ROS could lead to a self-amplifying process. This positive feedback loop may act as an all-or-nothing switch, which is in good accordance with the hypothesis that PTP is an important coordinator and executioner of PCD in both animals and plants.  相似文献   

9.
Previous studies have reported that light is required for activating Arabidopsis programmed cell death (PCD) induced by ultraviolet-C (UV-C) overexposure, and a caspase-like protease cleaving the caspase-3 substrate Asp-Glu-Val-Asp (DEVDase activity) is induced during this process. Our recent report has suggested that a quick burst of reactive oxygen species (ROS), which is mainly derived from mitochondria and chloroplasts, is induced in a light dependent manner during the early stages of UV-induced plant PCD. Concomitantly, the mitochondria undergo serious dysfunction including the MTP loss and the changes in distribution and mobility, which ultimately lead to apoptotic-cell death. Though some of signaling molecules have been elucidated in this type of plant cell death, the molecular mechanism about UV-induce Arabidopsis PCD is still poorly understood when comparing with the study of signaling pathways involved in animal cell apoptosis induced by UV. By using the Arabidopsis mesophyll protoplasts as a reference model, we have begun to shed light on the complexity of signaling pathway in UV-induced plant PCD. Recently we have tried to real-time detect the presence of caspase-like proteolytic activation, and to sort out the key role of ROS as well as to further assess the relationship between the ROS production and caspase-like activation in this type of plant apoptotic cell death.Key words: caspase-like activation, FRET, programmed cell death, reactive oxygen species, ultraviolet-CUltraviolet-C has been shown to be a very convenient trigger to induce PCD in plants and protoplasts.1,2 Others have shown that UV induction of plant PCD requires light and that caspase-like proteolytic activation is induced in this process.1 Our recent works have shown that ROS mainly localizing in mitochondria and chloroplasts are produced in a light dependent manner during the early stages of UV stress, and that ROS production and mitochondrial dysfunction play important roles during UV-induced Arabidopsis PCD (Fig. 1).2 We also found that if the Arabidopsis plants, which were kept at light for 1 h after UV irradiation then were moved to the dark and kept for 60 h, showed no evident plant death phenomena (unpublished data), though burst of ROS has appeared after UV exposure and subsequent 1 h light irradiation.2 In contrast, seedlings developed an obvious bleaching when kept in light for 60 h after UV treatment. These findings prompt us to carry out further investigations to dig out the role of ROS in the execution of this type of cell death, and to ask whether the produced ROS in the early stages is involved in the activation of caspase-like protease.Open in a separate windowFigure 1Hypothetical model of the signal transduction pathways in the plant programmed cell death induced by UV-C overexposure. After UV and light treatment a quick burst of ROS appear in the region of mitochondria and chloroplasts, then the mitochondria undergo functional dysfunction, which ultimately leads to cell death. Caspase-like activation and nucleus damage are also involved in the control of this type cell death. Solid line means the issues have been detected. Dotted line and question marks indicate events that have not been detected in this process. For detailed explanation, see the text.It has been reported that ROS is required for the release of cytochrome c (cyt c) and subsequent activation of caspase-like proteases during heat-shock induced plant PCD, and the addition of caspase inhibitors (zVAD-fmk or AC-DEVD-CHO) can prevent the degradation of cyt c and protect the plant cells from cell death.3 Thus these findings suggest that ROS can trigger the release of cyt c, but do not cause cell death, which requires caspase-like activation.3 Conversely, caspase inhibitors have also shown to effectively block the oxidative burst and the plant cell death induced by camptothecin incubation.4 These studies suggest the complex relationship between ROS production and caspase activation during execution of plant PCD event. The ROS production and the mitochondrial dysfunction during UV-induced plant PCD have been illustrated in our research. We have suggested the occurrence of MTP disruption during UV stress; however, whether cyt c is released from mitochondria has not been assessed (Fig. 1). The important roles of cyt c release and subsequent caspase activation have been suggested in various types of programmed cell death including mammal and plant cells.3,5,6 It will be a very challenging work to detect whether cyt c is released from mitochondria and is involved in the caspase-like proteolytic activation, and to further elucidate the relationship between ROS production and caspase-like activation in UV-induced plant PCD (Fig. 1).The involvement of caspase-like proteases in the control of cell death activation in plants has been shown in various forms of plant PCD.7 Using synthetic fluorogenic caspase-3 substrate, DEVD cleavage activity was detected during UV or heat shock-induced apoptosis of plant cells, and caspase inhibitors were able to suppress these types of cell death.1,3 Caspase-like activities have also been detected in plant hypersensitive response (HR) triggered by tobacco mosaic virus (TMV), or plant PCD induced by chemicals like camptothecin.8,9 All these experiments suggest the existence of functional caspase proteolytic activity in plant cells undergoing PCD. However, most of these results are from in vitro analysis using synthetic fluorogenic substrates or synthetic peptide inhibitor to caspases, this demand us to further dig out the plant caspase encoding gene and to real-time detect the caspase-like activity in vivo.Another of our ongoing work is aiming to detect the caspase-3-like proteolytic activation in living plant cells during UV-induced plant PCD, which is achieved by using the fluorescence resonance energy transfer (FRET) technique. FRET is the phenomenon whereby a fluorescent molecule—the donor—transfers energy by a nonradiative (through space) mechanism to a neighboring chromophore - the acceptor.10 FRET as a powerful technique to monitor compartmentation and subcellular targeting as well as to visualize protein-protein interactions and proteases activity in living cells has gained increasing importance for biotechnological applications during the last few years.11 During the past few years FRET technique has been successfully used to monitor interactions and distances between molecules in living plant cells.1214 Presently, we have constructed a recombinant caspase substrate to monitor caspase-3-like protease activation in single living plant protoplast in real time. This recombinant is composed of enhanced cyan fluorescence protein (ECFP) as the FRET donor and enhanced yellow fluorescence protein (EYFP) as the acceptor, linked by peptides containing the caspase-3 cleavage sequence, DEVD (ECFP-DEVD-EYFP) as the papers demonstrated. 15 Arabidopsis mesophyll protoplasts have been successfully transiently transfected with our recombinant plasmid for expression of ECFP-DEVD-EYFP fusion proteins under control of the CaMV 35S promoter according to a modified procedure (as described previously, ref. 16). Preliminary experimental results have proved the feasibility of this method to real-time detect the caspase-like activation in living plant cells during UV-induced plant PCD.Using this FRET probe, we may real-time detect the caspase-like activation during UV-induced plant PCD, and elucidate the relationship between ROS production and caspase-like activation as well as verify our hypothesis that whether ROS is necessary for the activation of caspase-like proteases during this process. So the role of ROS in the execution of this type cell death can be further investigated. These subsequent researches will certainly increase our knowledge about the signal transduction pathways in UV-induced Arabidopsis PCD.  相似文献   

10.
Plant cells undergoing programmed cell death (PCD) at late stages typically show chromatin condensation and endonucleolytic cleavage prior to obvious membrane or organelle ultrastructural changes. To investigate possible early PCD-associated events, we used microscopic observations and flow cytometry to quantitate mitochondrial membrane potential (DeltaPsim) changes during PCD at the single cell and population levels using Arabidopsis protoplasts. A DeltaPsim loss was commonly induced early during plant PCD and was important for PCD execution, as evidenced by the concomitant reduction of the change in DeltaPsim and PCD by cyclosporin A, which inhibits mitochondrial permeability transition pores in animal cells. DeltaPsim loss occurred prior to nuclear morphological changes and was only associated with mitochondrial cytochrome c release (an apoptotic trigger in animals) in response to one of three PCD elicitors. Three different stimuli in wild type implicated DeltaPsim changes in PCD: ceramide, protoporphyrin IX, and the hypersensitive response elicitor AvrRpt2. Additionally, the behavior of the conditional ectopic cell death mutant accelerated cell death2 and ACD2-overproducing plants also implicated DeltaPsim alteration as key for PCD execution. Because ACD2 is largely a chloroplast component in mature plants, the observation that the cell death in acd2 mutants requires changes in mitochondrial functions implicates communication between chloroplasts and mitochondria in mediating PCD activation. We suggest that DeltaPsim loss is a common early marker in plant PCD, similar to what has been documented in animals. However, unlike in animal cells, in plant cells, mitochondrial cytochrome c release is not an obligatory step in PCD control.  相似文献   

11.
Mitochondrial involvement has not been identified in the programmed cell death (PCD) of leaf senescence which suggests that processes such as those involving reactive oxygen species (ROS) are controlled by chloroplasts. We report that transgenic tobacco (DeltandhF), with the plastid ndhF gene knocked-out, shows low levels of the plastid Ndh complex, homologous to mitochondrial complex I, and more than a 30-day-delay in leaf senescence with respect to wt. The comparison of activities and protein levels and analyses of genetic and phenotypic traits of wtxDeltandhF crosses indicate that regulatory roles of mitochondria in animal PCD are assumed by chloroplasts in leaf senescence. The Ndh complex would increase the reduction level of electron transporters and the generation of ROS. Chloroplastic control of leaf senescence provides a nonclassical model of PCD and reveals an unexpected role of the plastid ndh genes that are present in most higher plants.  相似文献   

12.
何光明  邓兴旺 《植物学报》2018,53(4):441-444
程序性细胞死亡(PCD)是生物体受遗传调控的自主细胞死亡现象, 在植物生长发育和抵抗环境胁迫中起重要作用。PCD的发生可受线粒体中活性氧(ROS)诱导。中国科学院遗传与发育生物学研究所李家洋研究组早期的研究发现了1个拟南芥(Arabidopsis thaliana)细胞死亡突变体mod1, 并暗示植物细胞中存在叶绿体与线粒体之间的信号交流调控PCD, 但其中的具体作用机制尚不清楚。最近, 他们通过大规模筛选mod1突变体的抑制突变体, 克隆了3个新的抑制基因plNAD- MDHDiT1mMDH1。此3个基因分别编码质体定位的NAD依赖的苹果酸脱氢酶、叶绿体被膜定位的二羧酸转运蛋白1和线粒体定位的苹果酸脱氢酶1, 突变后都可抑制mod1中ROS的积累及PCD的发生。通过对这些基因进行深入的功能分析, 他们论证了苹果酸从叶绿体到线粒体的转运对线粒体中ROS的产生及随后PCD的诱导起重要作用。该研究拓展了我们对植物细胞中细胞器间交流的认识, 为我们深入理解植物PCD发生机制提供了新线索, 是该领域的一项突破性进展。  相似文献   

13.
Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.  相似文献   

14.
Background information. Cadmium (Cd) is a highly toxic heavy metal that causes changes in plant metabolism through inhibiting photosynthesis and respiration. The effects of Cd on the morphology and function of the chloroplast and mitochondria, as well as on the production and localization of ROS (reactive oxygen species), were studied at the single‐cell level in Arabidopsis. Results. The present study showed that the morphology of chloroplasts changed after Cd treatment, and the photochemical efficiency dramatically declined prior to obvious morphological distortion in the chloroplasts. A quick burst of ROS was detected after Cd treatment. The ROS appeared first in the mitochondria and subsequently in the chloroplast. Simultaneously, the mitochondria clumped irregularly around the chloroplasts or aggregated in the cytoplasm, and the movement of mitochondria was concomitantly blocked. Furthermore, the production of ROS was decreased after pre‐treatment with ascorbic acid or catalase, which prevented inhibition of photosynthesis, organelle changes and subsequent protoplast death. Our results suggest that the distribution and mobility of mitochondria, the morphology of chloroplasts and the accumulation of ROS play important roles in Cd‐induced cell death. The results are in good agreement with previous reports of many types of apoptotic‐like cell death. Conclusion. The changes in the distribution and mobility of mitochondria, and morphology of chloroplasts, as well as the accumulation of ROS, play important roles in Cd‐induced cell death.  相似文献   

15.
We tried to determine the mechanisms by which Ca2+ mediated NO-induced programmed cell death (PCD) in tobacco protoplasts. Treatment of tobacco protoplasts with the NO donor sodium nitroprusside (SNP) resulted in a rapid [Ca2+]cyt accumulation and decrease in mitochondrial membrane potential (ΔΨm) before the appearance of PCD. NO-induced PCD could be largely prevented not only by NO scavenger c-PTIO, but also by EGTA (Ca2+ chelator), LaCl3 (Ca2+-channel blocker) or CsA (a specific mitochondrial permeability transition pore inhibitor, which also inhibit Ca2+ cycling by mitochondria). All results suggested that NO-induced PCD is mediated through mitochondrial pathway and regulated by Ca2+.  相似文献   

16.
The barley aleurone layer is a terminally differentiated secretory tissue whose activity is hormonally controlled. The plant hormone gibberellic acid (GA) stimulates the secretion of hydrolytic enzymes and triggers the onset of programmed cell death (PCD). Abscisic acid (ABA) antagonizes the effects of GA and inhibits enzyme secretion and PCD. Reactive oxygen species (ROS) are key players in many types of PCD, and data presented here implicate ROS in hormonally regulated death of barley aleurone cells. Incubation of aleurone layers or protoplasts in H(2)O(2)-containing media results in death of GA-treated but not ABA-treated aleurone cells. Cells that are programmed to die are therefore less able to withstand ROS than cells that are programmed to remain alive. Illumination of barley aleurone protoplasts with blue or UV-A light results in a rapid increase in intracellular H(2)O(2) production. GA-treated protoplasts die rapidly in response to this increase in intracellular H(2)O(2) production, but ABA-treated protoplasts do not die. The rate of light-induced death could be slowed by antioxidants, and incubating protoplasts in the dark with the antioxidant butylated hydroxy toluene reduces the rate of hormonally induced death. Taken together, these data demonstrate that GA-treated aleurone protoplasts are less able than ABA-treated protoplasts to tolerate internally generated or exogenously applied H(2)O(2), and strongly suggest that ROS are components of the hormonally regulated cell death pathway in barley aleurone cells.  相似文献   

17.
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.  相似文献   

18.
19.
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each expressing mitochondrial-targeted green fluorescent protein (GFP), were observed by epifluorescence microscopy, and quantified. Chemical induction of ROS production, or a mild heat shock, caused a rapid and consistent change in mitochondrial morphology (termed the mitochondrial morphology transition) that preceded cell death. Treatment of protoplasts with a cell-permeable superoxide dismutase analogue, TEMPOL, blocked this morphology change. Incubation of protoplasts in micromolar concentrations of the calcium channel-blocker lanthanum chloride, or the permeability transition pore inhibitor cyclosporin A, prevented both the mitochondrial morphology transition and subsequent cell death. It is concluded that the observed mitochondrial morphology transition is an early and specific indicator of cell death and is a necessary component of the cell death process.  相似文献   

20.
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin‐related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 + sectors, ACD2 functions cell autonomously, implicating a pro‐death ACD2 substrate as being cell non‐autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light‐dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro‐death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号