共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Since mitochondria are closed spaces in the cell, metabolite traffic across the mitochondrial membrane is needed to accomplish energy metabolism. The mitochondrial carriers play this function by uniport, symport and antiport processes. We give here a survey of about 50 transport processes catalysed by more than 30 carriers with a survey of the methods used to investigate metabolite transport in isolated mammalian mitochondria. The role of mitochondria in metabolic pathways including ammoniogenesis, amino acid metabolism, mitochondrial shuttles etc. is also reported in more detail, mainly in the light of the existence of new transport processes. 相似文献
3.
An S. Tan James W. BatyMichael V. Berridge 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.Scope of Review
This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.Major Conclusions
It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.General Significance
Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. 相似文献4.
Flash-quench experiments were carried out to explore peptide/DNA electron-transfer reactions. DNA-bound [Ru(phen)(2)(dppz)](3+) (phen = 1,10-phenanthroline; dppz = dipyridophenazine) and [Ru(phen)(bpy')(dppz)](3+) [bpy' = 4-(4'-methyl-2, 2'-bipyridyl)valerate], generated in situ by flash-quench methodology, are powerful ground-state oxidants, capable of oxidizing guanine or tyrosine intercalated in DNA. In flash-quench experiments with mixed-sequence oligonucleotides in the presence of Lys-Tyr-Lys, transient absorption spectroscopy yielded a spectrum with a sharp maximum at 405 nm assigned to the tyrosine radical. Experiments with poly(dG.dC) suggested the intermediacy of the guanine radical, since the rise of the 405 nm signal occurred with the same kinetics as the disappearance of the guanine radical, as monitored at 510 nm. In oligonucleotide duplexes containing [Ru(phen)(bpy')(dppz)](2+) tethered at one end, damage to distant guanines was observed by gel electrophoresis, consistent with the mobility of the electron hole through the DNA duplex; the presence of the peptide did not inhibit but instead altered the distribution of guanine damage. Covalent adducts of the DNA and Lys-Tyr-Lys were detected as final irreversible products of this peptide-to-DNA electron-transfer chemistry by mass spectrometric and enzymatic digestive analysis. From these different assays and comparison of reactions of Lys-Trp-Lys and Lys-Tyr-Lys, the reactivity of the DNA-bound tyrosine radical was found to differ considerably from that of the tryptophan radical. These results establish that Lys-Tyr-Lys and Lys-Trp-Lys can participate in long-range electron-transfer reactions through the DNA from a distinct binding site. On that basis, proposals for functional roles for these peptide radicals may be considered. 相似文献
5.
《Mitochondrion》2007
In mitochondria, most Coenzyme Q is free in the lipid bilayer; the question as to whether tightly bound, non-exchangeable Coenzyme Q molecules exist in mitochondrial complexes is still an open question.We review the mechanism of inter-complex electron transfer mediated by ubiquinone and discuss the kinetic consequences of the supramolecular organization of the respiratory complexes (randomly dispersed vs. super-complexes) in terms of Coenzyme Q pool behavior vs. metabolic channeling, respectively, both in physiological and in some pathological conditions. As an example of intra-complex electron transfer, we discuss in particular Complex I, a topic that is still under active investigation. 相似文献
6.
We have compared the modes and rates of cytochrome c diffusion to the rates of cytochrome c-mediated electron transport in isolated inner membranes and in whole intact mitochondria. For inner membranes, an increasing ionic strength results in an increasing rate of cytochrome c diffusion, a decreasing concentration (affinity) of cytochrome c near the membrane surface as well as near its redox partners, and an increasing rate of electron transport. For intact mitochondria, an increasing ionic strength results in a parallel, increasing rate of cytochrome c-mediated electron transport. In both inner membranes and intact mitochondria the rate of cytochrome c-mediated electron transport is highest at physiological ionic strength (100-150 mM), where the diffusion rate of cytochrome c is highest and its diffusion mode is three-dimensional. In intact mitochondria, succinate and duroquinol-driven reduction of endogenous cytochrome c is greater than 95% at all ionic strengths, indicating that cytochrome c functions as a common pool irrespective of its diffusion mode. Using a new treatment to obtain bimolecular diffusion-controlled collision frequencies in a heterogenous diffusion system, where cytochrome c diffuses laterally, pseudo-laterally, or three-dimensionally while its redox partners diffuse laterally, we determined a high degree of collision efficiency (turnover/collisions) for cytochrome c with its redox partners for all diffusion modes of cytochrome c. At physiological ionic strength, the rapid diffusion of cytochrome c in three dimensions and its low concentration (affinity) near the surface of the inner membrane mediate the highest rate of electron transport through maximum collision efficiencies. These data reveal that the diffusion rate and concentration of cytochrome c near the surface of the inner membrane are rate-limiting for maximal (uncoupled) electron transport activity, approaching diffusion control. 相似文献
7.
8.
Zhang JG Tirmenstein MA Nicholls-Grzemski FA Fariss MW 《Archives of biochemistry and biophysics》2001,393(1):87-96
Mitochondrial electron transport inhibitors induced two distinct pathways for acute cell death: lipid peroxidation-dependent and -independent in isolated rat hepatocytes. The toxic effects of mitochondrial complex I and II inhibitors, rotenone (ROT) and thenoyltrifluoroacetone (TTFA), respectively, were dependent on oxidative stress and lipid peroxidation, while cell death induced by inhibitors of complexes III and IV, antimycin A (AA) and cyanide (CN), respectively, was caused by MMP collapse and loss of cellular ATP. Accordingly, cellular and mitochondrial antioxidant depletion or supplementation, in general, resulted in a dramatic potentiation or prevention, respectively, of toxic injury induced by complex I and II inhibitors, with little or no effect on complex III and IV inhibitor-induced toxicity. ROT-induced oxidative stress was prevented by the addition of d-alpha-tocopheryl succinate (TS) but surprisingly TS did not afford hepatocytes protection against TTFA-induced oxidative damage. TS treatment prevented ROT-induced mitochondrial lipid hydroperoxide formation but had no effect on the loss of mitochondrial GSH or cellular ATP, suggesting a mitochondrial lipid peroxidation-mediated mechanism for ROT-induced acute cell death. In contrast, only fructose treatment provided excellent cytoprotection against AA- and CN-induced toxicity. Our findings indicate that complex III and IV inhibitors cause a rapid and severe depletion of cellular ATP content resulting in acute cell death that is dependent on cellular energy impairment but not lipid peroxidation. In contrast, inhibitors of mitochondrial complex I or II moderately deplete cellular ATP levels and thus cause acute cell death via a lipid peroxidation pathway. 相似文献
9.
10.
Ultrasonic radiation produced a dose-dependent linear increase in lipid peroxidation in the liposomal membrane as reflected in the measurements of conjugated dienes, lipid hydroperoxides, and malondialdehydes (MDA). Production of MDA was confirmed by spectrophotometric and spectrofluorometric methods including the detection of excitation (360 nm) and emission (435 nm) maxima characteristic of the MDA-glycine adduct formed after addition of glycine in the system. Ultrasound of frequencies 20 kHz (used for laboratory purposes) and 3.5 MHz (used for clinical purposes) produced MDA in an identical manner. Ultrasound-induced lipid peroxidation was enhanced synergistically by 2.5 X 10(2) microM ascorbic acid but inhibited significantly by 10(4) microM ascorbic acid. Ultrasound-induced production of MDA could not be inhibited to any significant degree by superoxide dismutase, histidine, dimethylfuran, or beta-carotene but was very significantly inhibited by cholesterol (93%), butylated hydroxytoluene (88%), alpha-tocopherol (85%), sodium benzoate (80%), dimethyl sulfoxide (80%), sodium formate (64%), and EDTA (64%). The scavenger studies indicated the functional role of OH radicals in the initiation of ultrasound-induced lipid peroxidation. 相似文献
11.
12.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the P/2e ratios remain unaltered. In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700. 相似文献
13.
The effect of cytochrome c and its `dimer'' on electron transfer and energy transformation 下载免费PDF全文
A preparation that contained cytochrome c, mainly in the form of its ;dimer', was studied and compared with native cytochrome c with respect to its ability to support electron transfer and energy transformation in cytochrome c-depleted rat liver mitochondria. When the depleted mitochondria were titrated with either cytochrome c or the ;dimer', the extent of coupling between respiration and phosphorylation was enhanced, as manifested by an increase in the P/O ratio. The ;dimer' was relatively ineffective as an electron carrier in the respiratory system, but it was as effective as cytochrome c in reconstitution of oxidative phosphorylation in depleted mitochondria. Addition of ;dimer' to the depleted mitochondria, in the presence of a low, non-saturating concentration of cytochrome c, increased the P/O ratio without concomitant stimulation of respiration. Both cytochrome c and the ;dimer' stimulated spontaneous swelling and electron transport-driven proton translocation in depleted mitochondria. The pattern of action of cytochrome c and its ;dimer' is in accord with the assumption that they affect an early step in energy conservation. 相似文献
14.
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. It is known that oxygen is initially converted to superoxide anion (O2-), one of reactive oxygen species (ROS), by electron leaked from mainly complex III in the electron transport system present in mitochondria, where it is the major endogenous source of ROS. We have shown that a mutation in a subunit, cytochrome b large subunit (SDHC), of complex II, also results in increasing O2- production and therefore lead to apoptosis and precocious aging in Caenorhabditis elegans. Recently, individuals with an inherited propensity for vascularized head and neck tumors (i.e., paragangliomas) have been demonstrated to contain one of several mutations in complex II. To further explore the role of oxidative stress from mitochondria on apoptosis and cancer, we established a transgenic cell line with a point mutation at the ubiquinone binding region in the SDHC gene. As expected, this mutation increased O2- production from complex II and led to excess apoptosis. Moreover, a significant fraction of the surviving cells from the apoptosis were transformed, as evidenced by increased tumor formation after injection into mice. Oxidative stress results in the damage to the cellular components including mitochondria and, therefore leads to apoptosis. Furthermore, oxidative stress must cause mutations in DNA and leads to cancer. It is suggested that oxidative stress from mitochondria play an important role of both apoptosis, which leads to precocious aging, and cancer. 相似文献
15.
16.
Sensory transduction in aerotaxis required electron transport, in contrast to chemotaxis, which is independent of electron transport. Assays for aerotaxis were developed by employing spatial and temporal oxygen gradients imposed independently of respiration. By varying the step increase in oxygen concentration in the temporal assay, the dose-response relationship was obtained for aerotaxis in Salmonella typhimurium. A half-maximal response at 0.4 microM oxygen and inhibition by 5 mM KCN suggested that the "receptor" for aerotaxis is cytochrome o. The response was independent of adenosine triphosphate formation via oxidative phosphorylation but did correlate with changes in membrane potential monitored with the fluorescent cyanine dye diS-C3-(5). Nitrate and fumarate, which are alternative electron acceptors for the respiratory chain in S. typhimurium, inhibited aerotaxis when nitrate reductase and fumarate reductase were induced. These results support the hypothesis that taxis to oxygen, nitrate, and fumarate is mediated by the electron transport system and by changes in the proton motive force. Aerotaxis was normal in Escherichia coli mutants that were defective in the tsr, tar, or trg genes; in S. typhimurium, oxygen did not stimulate methylation of the products of these genes. A cheC mutant which shows an inverse response to chemoattractants also gave an inverse response to oxygen. Therefore, aerotaxis is transduced by a distinct and unidentified signally protein but is focused into the common chemosensory pathway before the step involving the cheC product. When S. typhimurium became anaerobic, the decreased proton motive force from glycolysis supported slow swimming but not tumbling, indicating that a minimum proton motive force was required for tumbling. The bacteria rapidly adapted to the anaerobic condition and resumed tumbling after about 3 min. The adaptation period was much shorter when the bacteria had been previously grown anaerobically. 相似文献
17.
Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein 总被引:1,自引:0,他引:1 下载免费PDF全文
Ellis CE Murphy EJ Mitchell DC Golovko MY Scaglia F Barceló-Coblijn GC Nussbaum RL 《Molecular and cellular biology》2005,25(22):10190-10201
The presynaptic protein alpha-synuclein, implicated in Parkinson disease (PD), binds phospholipids and has a role in brain fatty acid (FA) metabolism. In mice lacking alpha-synuclein (Snca-/-), total brain steady-state mass of the mitochondria-specific phospholipid, cardiolipin, is reduced 22% and its acyl side chains show a 51% increase in saturated FAs and a 25% reduction in essential n-6, but not n-3, polyunsaturated FAs. Additionally, 23% reduction in phosphatidylglycerol content, the immediate biosynthetic precursor of cardiolipin, was observed without alterations in the content of other brain phospholipids. Consistent with these changes, more ordered lipid head group and acyl chain packing with enhanced rotational motion of diphenylhexatriene (DPH) about its long axis were demonstrated in time-resolved DPH fluorescence lifetime experiments. These abnormalities in mitochondrial membrane properties were associated with a 15% reduction in linked complex I/III activity of the electron transport chain, without reductions in mitochondrial number, complex II/III activity, or individual complex I, II, III, or IV activity. Reduced complex I activity is thought to be a critical factor in the development of PD. Thus, altered membrane composition and structure and impaired complex I/III function in Snca-/- brain suggest a relationship between alpha-synuclein's role in brain lipid metabolism, mitochondrial function, and PD. 相似文献
18.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the ratios remain unaltered.In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700. 相似文献
19.
Nandha B Finazzi G Joliot P Hald S Johnson GN 《Biochimica et biophysica acta》2007,1767(10):1252-1259
The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reduction following oxidation in the presence of DCMU, we conclude that this mutant is able to perform cyclic electron flow at a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced in wild type leaves, i.e. high light or low CO(2) concentrations resulted in enhancement of cyclic electron flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimuli in the mutant. We also show that the pgr5 mutant is affected in the redox poising of the chloroplast, with the electron transport chain being substantially reduced under most conditions. This may result in defective feedback regulation of photosynthetic electron transport under some conditions, thus providing a rationale for the reduced efficiency of cyclic electron flow. 相似文献
20.
The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reduction following oxidation in the presence of DCMU, we conclude that this mutant is able to perform cyclic electron flow at a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced in wild type leaves, i.e. high light or low CO2 concentrations resulted in enhancement of cyclic electron flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimuli in the mutant. We also show that the pgr5 mutant is affected in the redox poising of the chloroplast, with the electron transport chain being substantially reduced under most conditions. This may result in defective feedback regulation of photosynthetic electron transport under some conditions, thus providing a rationale for the reduced efficiency of cyclic electron flow. 相似文献