首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms.  相似文献   

2.
Wedding RT  Dole P  Chardot TP  Wu MX 《Plant physiology》1992,100(3):1366-1368
Phosphoenolpyruvate carboxylase purified from leaves of maize (Zea mays, L.) is sensitive to the presence of urea. Exposure to 2.5 m urea for 30 min completely inactivates the enzyme, whereas for a concentration of 1.5 m urea, about 1 h is required. Malate appears to have no effect on inactivation by urea of phosphoenolpyruvate carboxylase. However, the presence of 20 mm phosphoenolpyruvate or 20 mm glucose-6-phosphate prevents significant inactivation by 1.5 m urea for at least 1 h. The inactivation by urea is reversible by dilution. The inhibition by urea and the protective effects of phosphoenolpyruvate and glucose-6-phosphate are associated with changes in aggregation state.  相似文献   

3.
The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.  相似文献   

4.
A sulfurtransferase has been purified to apparent homogeneity from the prokaryote Acinetobacter calcoaceticus lwoffi by conventional protein fractionation techniques. Steady-state kinetic studies of the enzyme revealed that its formal mechanism varies with the acceptor substrate employed. With inorganic thiosulfate as the sulfane sulfur-donor substrate and cyanide anion as the acceptor, the enzyme was shown to catalyze the reaction by a double displacement mechanism like that of mammalian rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). In contrast, with a thiol as the acceptor substrate at relatively high concentrations, the reaction proceeds by a single displacement mechanism, reminiscent of catalysis by another sulfur-transferase, thiosulfate reductase, glutathione-dependent (EC 2.8.1.3). When dithiothreitol is the acceptor substrate, the enzyme cycles through both the single and double displacement pathways, with the flux through each depending differentially on the concentration of dithiothreitol employed. In view of both the relaxed acceptor substrate specificity and the corresponding variability of formal mechanism, the more general name of sulfane sulfurtransferase is proposed for this bacterial enzyme.  相似文献   

5.
Urea amidolyase (UAL) is a multifunctional biotin‐dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP‐dependent cleavage of urea into ammonia and CO2. UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.  相似文献   

6.
The committed biosynthetic reaction to benzoyl-coenzyme A in the marine bacterium "Streptomyces maritimus" is carried out by the novel prokaryotic phenylalanine ammonia lyase (PAL) EncP, which converts the primary amino acid L-phenylalanine to trans-cinnamic acid. Recombinant EncP is specific for L-phenylalanine and shares many biochemical features with eukaryotic PALs, which are substantially larger proteins by approximately 200 amino acid residues.  相似文献   

7.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was purified 100-fold from the cyanobacterium Coccochloris peniocystis with a yield of 10%. A single isozyme was found at all stages of purification, and activity of other beta-carboxylase enzymes was not detected. The apparent molecular weight of the native enzyme was 560,000. Optimal activity was observed at pH 8.0 and 40 degrees C, yielding a Vmax of 8.84 mumol/mg of protein per min. The enzyme was not protected from heat inactivation by aspartate, malate, or oxalacetate. Michaelis-Menten reaction kinetics were observed for various concentrations of PEP, Mg2+, and HCO3-, yielding Km values of 0.6, 0.27, and 0.8 mM, respectively. Enzyme activity was inhibited by aspartate and tricarboxylic acid cycle intermediates and noncompetitively inhibited by oxalacetate, while activation by any compound was not observed. However, the enzyme was sensitive to metabolic control at subsaturating substrate concentrations at neutral pH. These data indicate that cyanobacterial PEP carboxylase resembles the enzyme isolated from C3 plants (plants which initially incorporate CO2 into C3 sugars) and suggest that PEP carboxylase functions anapleurotically in cyanobacteria.  相似文献   

8.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

9.
The dissociation of D-ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach, which consists of eight large subunits (L, 53 kDa) and eight small subunits (S, 14 kDa) and thus has a quarternary structure L8S8, has been investigated using a variety of physical techniques. Gel chromatography using Sephadex G-100 indicates the quantitative dissociation of the small subunit S from the complex at 3-4 M urea (50 mM Tris/Cl pH 8.0, 0.5 mM EDTA, 1 mM dithiothreitol and 5 mM 2-mercaptoethanol). The dissociated S is monomeric. Analytical ultracentrifuge studies show that the core of large subunits, L, remaining at 3-4 M urea sediments with S20, w = 15.0 S, whereas the intact enzyme (L8S8) sediments with S20, w = 17.7S. The observed value is consistent with a quarternary structure L8. The dissociation reaction in 3-4 M urea can thus be represented by L8S8----L8 + 8S. At urea concentrations c greater than 5 M the L8 core dissociates into monomeric, unfolded large subunits. A large decrease in fluorescence emission intensity accompanies the dissociation of the small subunit S. This change is completed at 4 M urea. No changes are observed upon dissociating the L8 core. The kinetics of dissociation of the small subunit, as monitored by fluorescence spectroscopy, closely follow the kinetics of loss of carboxylase activity of the enzyme. Studies of the circular dichroism of D-ribulose-1,5-bisphosphate carboxylase in the wavelength region 200-260 nm indicate two conformational transitions. The first one ([0]220 from -8000 to -3500 deg cm2 dmol-1) is completed at 4 M urea and corresponds to the dissociation of the small subunit and coupled conformational changes. The second one ([0]220 from -3500 to -1200 deg cm2 dmol-1) is completed at 6 M urea and reflects the dissociation and unfolding of large subunits from the core. The effect of activation of the enzyme by addition of MgCl2 (10 mM) and NaHCO3 (10 mM) on these conformational transitions was investigated. The first conformational transition is then shifted to higher urea concentrations: a single transition ([0]220 from -8000 to -1200 deg cm2 dmol-1) is observed for the activated enzyme. From the urea dissociation experiments we conclude that both large (L) and small (S) subunits are important for carboxylase activity of spinach D-ribulose-1,5-bisphosphate carboxylase: the L-S subunit interactions tighten upon activation and dissociation of S leads to a coupled, proportional loss of enzyme activity.  相似文献   

10.
Agarose gel electrophoresis was used to identify metabolic enzymes in Babesia bovis and B. bigemina. Glutamate dehydrogenase, lactate dehydrogenase, glucose phosphate isomerase, and hexokinase were identified in B. bovis- and B. bigemina-infected erythrocytes and B. bovis merozoite preparations. A specific electrophoretic mobility was observed for each enzyme. Malate dehydrogenase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and adenylate kinase were only detected in normal erythrocyte preparations. Inter-species, but not intra-species, variation was noted when comparing electrophoretograms of both species. Kinin-activating activity was not detected in B. bovis-infected erythrocyte or merozoite preparations at pH 4.2 or 7.6.  相似文献   

11.
12.
Nimmo GA  Wilkins MB  Nimmo HG 《Planta》2001,213(2):250-257
The activity of phosphoenolpyruvate carboxylase (PEPCase) kinase in leaf extracts increased markedly on dilution. This was shown to be caused by the presence of a protein that inhibits the kinase. The inhibitor protein was separated from the kinase and purified partially. It inhibited the kinase reversibly, presumably by a direct interaction; it was neither a protease nor a protein phosphatase. The amounts of kinase and inhibitor in leaves were estimated following separation by hydrophobic chromatography. The amount of inhibitor in the crassulacean acid metabolism plant Kalanchoe fedtschenkoi Hamet et Perrier was sufficient to inhibit the basal level of kinase activity present during the light period and the early stages of the dark period. Similarly, the amount of inhibitor in the C4 plant Zea mays L. was sufficient to inhibit the low amount of kinase activity present in the dark and at moderate light intensity. Analogous to the role of the protein inhibitor of mammalian cyclic AMP-dependent protein kinase, the function of the PEPCase kinase inhibitor may be to inhibit the basal level of kinase present in conditions under which rapid flux through PEPCase is not required.  相似文献   

13.
14.
Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) electrophoretic tissue patterns of two different orders of Elasmobranchii: Carchariniformes (Galeus melanostomus and Prionace glauca) and Squaliformes (Etmopterus spinax and Scymnorinus licha) were studied. The number of loci expressed for these enzymes was the same of other elasmobranch species. Differences in tissue distribution were noted in LDH from G. melanostomus due to the presence of an additional heterotetramer in the eye tissue. There were also differences in MDH. In fact, all the tissues of E. spinax and G. melanostomus showed two mitochondrial bands. Major differences were noted in the number of isozymes detected in the four compared elasmobranchs. The highest polymorphism was observed in E. spinax and G. melanostomus, two species that live in changeable environmental conditions. The resistance of isozymes after urea treatment was examined; the resulting patterns showed a quite good resistance of the enzymes, higher for LDH than MDH, also at urea concentration much greater than physiological one. These results indicated that the total isozyme resistance can be considered higher in urea accumulators (such as elasmobranchs) than in the non-accumulators (such as teleosts).  相似文献   

15.
A highly sensitive fluorogenic hexosaminidase substrate, fluorescein di(N-acetyl-beta-D-glucosaminide) (FDGlcNAc), was prepared essentially as described previously [Chem. Pharm. Bull. 1993, 41, 314] with some modifications. The fluorescent analog is a substrate for a number of hexosaminidases but here we have focused on the cytoplasmic O-GlcNAcase isoforms. Kinetic analysis using purified O-GlcNAcase and its splice variant (v-O-GlcNAcase) expressed in Escherichia coli suggests that FDGlcNAc is a much more efficient substrate (Km = 84.9 microM) than the conventional substrate, para-nitrophenyl 2-acetamido-2-deoxy-beta-D-glucopyranoside (pNP-beta-GlcNAc, Km = 1.1 mM) and a previously developed fluorogenic substrate, 4-methylumbelliferyl 2-acetamido-2-deoxy-beta-D-glucopyranoside [MUGlcNAc, Km = 0.43 mM; J. Biol. Chem. 2005, 280, 25313] for O-GlcNAcase. The variant O-GlcNAcase, a protein lacking the C-terminal third of the full-length O-GlcNAcase, exhibited a Km of 2.1 mM with respect to FDGlcNAc. This shorter isoform was not previously thought to exhibit O-GlcNAcase activity based on in vitro studies with pNP-beta-GlcNAc. However, both O-GlcNAcase isoforms reduced O-GlcNAc protein levels extracted from HeLa and HT-29 cells in vitro, indicating that the splice variant is a bona fide O-GlcNAcase. Fluorescein di-N-acetyl-beta-D-galactosaminide (FDGalNAc) is not cleaved by these enzymes, consistent with previous findings that the O-GlcNAcase has substrate specificity toward O-GlcNAc but not O-GalNAc. The enzymatic activity of the shorter isoform of O-GlcNAcase was first detected by using highly sensitive fluorogenic FDGlcNAc substrate. The finding that O-GlcNAcase exists as two distinct isoforms has a number of important implications for the role of O-GlcNAcase in hexosamine signaling.  相似文献   

16.
17.
Vitamin K-dependent carboxylase activity has been demonstrated in the crude microsomal fraction of the intima of bovine aortae. The procedure for the isolation of vessel wall carboxylase is a slight modification of the general preparation procedure for tissue microsomes. The highest activity of the non-hepatic enzyme was observed at 25 degrees C and hardly any NADH-dependent vitamin K reductase could be demonstrated. The optimal reaction conditions for both vessel wall as well as liver carboxylase were similar: 0.1 M-NaCl/0.05 M-Tris/HCl, pH 7.4, containing 8 mM-dithiothreitol, 0.4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonic acid (CHAPS), 0.4 mM-vitamin K hydroquinone and 2 M-(NH4)2SO4. Warfarin inhibits the hepatic and non-hepatic carboxylase/reductase enzyme complex more or less to a similar degree. We have measured the apparent Km values for the following substrates: Phe-Leu-Glu-Glu-Leu ('FLEEL'), decarboxylated osteocalcin, decarboxylated fragment 13-29 from descarboxyprothrombin and decarboxylated sperm 4-carboxyglutamic acid-containing (Gla-)protein. The results obtained demonstrated that liver and vessel wall carboxylase may be regarded as isoenzymes with different substrate specificities. The newly discovered enzyme is the first vitamin K-dependent carboxylase which shows an absolute substrate specificity: FLEEL and decarboxylated osteocalcin were good substrates for vessel wall carboxylase, but decarboxylated fragment 13-29 and decarboxylated sperm Gla-protein were not carboxylated at all.  相似文献   

18.
Bacterial acetyl-coenzyme A carboxylase (ACCase) is a multicomponent system composed of AccA, AccD, AccC, and AccB (also known as BCCP), which is required for fatty acid biosynthesis. It is essential for cell growth and has been chemically validated as a target for antimicrobial drug discovery. To identify ACCase inhibitors, a simple and robust assay that monitors the overall activity by measuring phosphate production at physiologically relevant concentrations of all protein components was developed. Inorganic phosphate production was demonstrated to directly reflect the coupled activities of AccC and AccA/D with BCCP cycling between the two half-reactions. The K(m) apparent values for ATP, acetyl-coenzyme A, and BCCP were estimated to be 60+/-14 microM, 18+/-4 microM, and 39+/-9 nM, respectively. The stoichiometry between the two half-reactions was measured to be 1:1. Carboxy-biotin produced in the first half-reaction was stable over the time course of the assay. The assay was adapted to a high-throughput screen (HTS) 384-well format using a modified published scintillation proximity method. The optimized HTS assay has acceptable Z' factor values and was validated to report inhibitions of either AccC or AccA/D. The assay is not susceptible to signal quenching due to colored compounds.  相似文献   

19.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

20.
Yeast (Saccharomyces cerevisiae) is unusual in being the only organism thus far identified as having two genes for pyruvate carboxylase. The expression of the two isozymes Pyc1 and Pyc2 appears to be differentially regulated, and since both are expressed cytoplasmically, this suggests that they have different properties. To the present, little has been done to characterize these isozymes, and almost all of the published kinetic information on yeast pyruvate carboxylase comes from measurements of enzyme prepared from bakers' yeast which is likely to be a mixture of both isozymes. Here we have measured basic kinetic parameters for Pyc1 and found that the K(a) of this isozyme for acetyl CoA is in the order of 8-10-fold higher than previously recorded, suggesting that Pyc1 and Pyc2 may be differentially regulated by this effector. Pyc1 is highly dependent on the presence of acetyl CoA for activity and in this respect is similar to chicken liver pyruvate carboxylase. However, unlike the chicken liver enzyme, the quaternary structure of the enzyme is quite stable in the absence of acetyl CoA, and the major locus of action of this effector appears to lie outside of the stimulation of the biotin carboxylation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号