首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We here demonstrate the presence of a plasma membrane-associated phospholipase A2 (EC 3.1.1.4; PLA2) activity in spinach (Spinacia oleracea) leaves. The pH profile of the spinach plasma membrane PLA2 activity revealed two peaks, one at pH 4.4 and one at pH 5.5. The activity at pH 5.5 had an absolute requirement of Ca2+, with full enzyme activity at 10 μmol/L Ca2+. The Ca2+-dependent PLA2 activity was both heat sensitive and stimulated by diacylglycerol, whereas ATP completely inhibited the activity. Thus, the spinach plasma membrane contains a Ca2+-dependent PLA2 activity, which has not previously been characterised in plants. Cold acclimation of spinach resulted in a 2.2-fold higher plasma membrane PLA2 activity whereas the plasma membrane phospholipase D activity remained unaffected. Taken together, our data suggest a role of PLA2 in cold acclimation in plants.  相似文献   

2.
Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37°C and pH 6.5–8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 μM while for T. b. gambiense it is 119.64 and 32.90 μM for the substrates l,2-bis-(1-pyrenebutanoyl-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dode-canoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.  相似文献   

3.
We have shown previously that the phospholipase A (PLA) activity specific for phosphatidic acid (PA) in porcine platelet membranes is of the A1 type (PA-PLA1) [J. Biol. Chem. 259 (1984) 5083]. In the present study, the PA-PLA1 was solubilized in Triton X-100 from membranes pre-treated with 1 M NaCl, and purified 280-fold from platelet homogenates by sequential chromatography on blue-Toyopearl, red-Toyopearl, DEAE-Toyopearl, green-agarose, brown-agarose, polylysine-agarose, palmitoyl-CoA-agarose and blue-5PW columns. In the presence of 0.1% Triton X-100 in the assay mixture, the partially purified enzyme hydrolyzed the acyl group from the sn-1 position of PA independently of Ca2+ and was highly specific for PA; phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI) were poor substrates. The enzyme exhibited lysophospholipase activity for l-acyl-lysoPA at 7% of the activity for PA hydrolysis but no lipase activity was observed for triacylglycerol (TG) and diacylglycerol (DG). At 0.025% Triton X-100, the enzyme exhibited the highest activity, and PA was the best substrate, but PE was also hydrolyzed substantially. The partially purified PA-PLA1 in porcine platelet membranes was shown to be different from previously purified and cloned phospholipases and lipases by comparing the sensitivities to a reducing agent, a serine-esterase inhibitor, a PLA2 inhibitor, a Ca2+-independent phospholipase A2 inhibitor, and a DG lipase inhibitor.  相似文献   

4.
An entomopathogenic bacterium, Xenorhabdus nematophila, induces an immunosuppression of target insects by inhibiting phospholipase A2 (PLA2) activity. Recently, an immune-associated PLA2 gene was identified from the red flour beetle, Tribolium castaneum. This study cloned this PLA2 gene in a bacterial expression vector to produce a recombinant enzyme. The recombinant T. castaneum PLA2 (TcPLA2) exhibited its characteristic enzyme activity with substrate concentration, pH, and ambient temperature. Its biochemical characteristics matched to a secretory type of PLA2 (sPLA2) because its activity was inhibited by dithiothreitol (a reducing agent of disulfide bond) and bromophenacyl bromide (a specific sPLA2 inhibitor) but not by methylarachidonyl fluorophosphonate (a specific cytosolic type of PLA2). The X. nematophila culture broth contained PLA2 inhibitory factor(s), which was most abundant in the media obtained at a stationary bacterial growth phase. The PLA2 inhibitory factor(s) was heat-resistant and extracted in both aqueous and organic fractions. Effect of a PLA2-inhibitory fraction on the immunosuppression of T. castaneum was equally comparable with that resulted from inhibition of the TcPLA2 gene expression by RNA interference.  相似文献   

5.
The present study describes the purification and partial characterization of a basic anticoagulant PLA2 enzyme named as Rv(i) PLA2 from the venom of Indian Daboia russelii. The molecular mass of the protein was found to be 13,659.65 Da, and peptide mass fingerprinting revealed that it belongs to group II PLA2 family. The peptide sequence showed similarity to uncharacterized basic PLA2 enzyme having an accession no. of P86368 reported from Sri Lankan D. russelii. Rv(i) PLA2 exhibited strong phospholipase A2 and anticoagulant activity. It also induced expression of COX‐2 and TNF‐α mRNA in a dose‐dependent manner in phorbol 12‐myristate 13‐acetate differentiated THP‐1 cells, which play a crucial role during inflammation. Chemical modification of His residue in Rv(i) PLA2 with p‐bromophenacyl bromide abolished the enzymatic, anticoagulant, and inflammatory activities. The result indicates that the catalytic site of Rv(i) PLA2 might play a vital role in inducing inflammation at the bite site during D. russelii envenomation.  相似文献   

6.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

7.
The effects of solubilization with Triton X-100 or Brij 58 on the polypeptide composition and the substrate affinity of the tonoplast H+-ATPase of plants of Mesembryanthemum crystallinum performing C3 photosynthesis or crassulacean acid metabolism (CAM) have been compared. Although all known subunits of the tonoplast H+-ATPase were present in the fraction of solubilized proteins after treatment with Brij 58 or Triton X-100, with Triton X-100 the apparent KM value for ATP hydrolysis was increased by a factor of 1.8 and 1.5 in preparations from C3 and CAM plants, respectively, even at low concentrations in contrast to treatment with Brij 58. This is explained by structural changes of the tonoplast H+-ATPase due to the Triton X-100 treatment. After solubilization with Brij 58 the tonoplast H+-ATPase was partially purified by Superose-6 size-exclusion FPLC. When Brij 58 was present, addition of lipids to the chromatography buffer was not necessary to conserve enzyme activity in contrast to previously described purification methods using Triton X-100. The substrate affinity of the partial purified H+-ATPase was similar to the substrate affinity obtained for ATP-hydrolysis of native tonoplast vesicles, indicating that the enzyme structure during partial purification was conserved by using Brij 58. The results underline that the lipid environment of the tonoplast H+-ATPase is important for enzyme structure and function.  相似文献   

8.
Summary Snakes,Vipera berus, were acclimated to 5 and 25 °C for 3 months preceding measurements of O2 uptake and blood respiratory properties. O2 uptake measured at the lower acclimation temperature (5 °C) shows lower values for the cold-acclimated snakes. Measured at 25 °C cold-acclimation results in O2 uptakes slightly higher than in warm-acclimated snakes. The temperature sensitivity (Q10) of aerobic metabolism in thus higher for the cold-acclimated snakes being 3.17 compared to 2.11 for the warmacclimated.O2-Hb dissociation curves of whole blood from the two acclimation groups show a marked increase in O2 affinity associated with cold-acclimation independent of blood pH. The shift in O2 affinity correlates with a marked decrease in red cell organic phosphate concentration (ATP) in cold-acclimated snakes. The temperature sensitivity of the O2-Hb binding expressed by the H values was rather uniform at about –11 kcal·mol–1 (O2) for both acclimation groups. The CO2 Bohr factor in cold-acclimated blood at –0.55 was about double that in warm-acclimated. Then value for both acclimation groups increased with higher temperatures. Hematocrit and blood O2 capacity were higher in the cold-acclimated snakes.The acclimation effects on O2 uptake, O2-Hb affinity and the Bohr effect, are opposite to those obtained earlier on reptiles at lower latitudes. It is discussed how a downward translation of the O2 uptake-temperature curve and a high thermal sensitivity (Q10) may be adaptive for species at latitudinal extremes where the active season is short and diurnal temperatures fluctuate widely. It is further discussed how a change in O2 affinity by its influence on the capillary to cellular O2 gradients may affect the aerobic metabolism.  相似文献   

9.
Rat basophil leukemia cell homogenates effectively catalyze the conversion of leukotriene A4 to a mixture of leukotrienes C4 and D4 in the presence of glutathione. These homogenates also catalyze the formation of adducts of halogenated nitrobenzene with glutathione, as determined spectrophotometrically. While all the classical glutathione S-transferase activity resides in the soluble fraction of the homogenates, the thiol ether leukotriene-generating activity is found in the particulate fraction. This “leukotriene C synthetase” activity has been solubilized from a crude high-speed particulate fraction by means of the nonionic detergent, Triton X-100. The solubilized enzyme is incapable of converting 2,4-dinitrochlorobenzene to a colored product in the presence of glutathione. Nor will it react with 3,4-dichloronitrobenzene. On the other hand, under optimal conditions, this enzyme preparation is capable of generating about 0.1 nmol leukotriene C mg protein?1 min?1 in a reaction which continues in linear fashion for at least 10 min. This dissociation in substrate specificity, as well as differences in the inhibition profile, distinguish the enzyme activity in the particulate fraction from rat basophil leukemia cell homogenates from the microsomal glutathione S-transferase which has been described in rat liver homogenates, suggesting that this “leukotriene C synthetase” is a new and unique enzyme.  相似文献   

10.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

11.
Extraction systems for hydrophobically tagged proteins have been developed based on phase separation in aqueous solutions of non-ionic detergents and polymers. The systems have earlier only been applied for separation of membrane proteins. Here, we examine the partitioning and purification of the amphiphilic fusion protein endoglucanase Icore–hydrophobin I (EGIcore–HFBI) from culture filtrate originating from a Trichoderma reesei fermentation. The micelle extraction system was formed by mixing the non-ionic detergent Triton X-114 or Triton X-100 with the hydroxypropyl starch polymer, Reppal PES100. The detergent/polymer aqueous two-phase systems resulted in both better separation characteristics and increased robustness compared to cloud point extraction in a Triton X-114/water system. Separation and robustness were characterized for the parameters: temperature, protein and salt additions. In the Triton X-114/Reppal PES100 detergent/polymer system EGIcore–HFBI strongly partitioned into the micelle-rich phase with a partition coefficient (K) of 15 and was separated from hydrophilic proteins, which preferably partitioned to the polymer phase. After the primary recovery step, EGIcore–HFBI was quantitatively back-extracted (KEGIcore–HFBI=150, yield=99%) into a water phase. In this second step, ethylene oxide–propylene oxide (EOPO) copolymers were added to the micelle-rich phase and temperature-induced phase separation at 55°C was performed. Total recovery of EGIcore–HFBI after the two separation steps was 90% with a volume reduction of six times. For thermolabile proteins, the back-extraction temperature could be decreased to room temperature by using a hydrophobically modified EOPO copolymer, with slightly lower yield. The addition of thermoseparating co-polymer is a novel approach to remove detergent and effectively releases the fusion protein EGIcore–HFBI into a water phase.  相似文献   

12.
Cardiolipin, a major component of mitochondria, is critical for mitochondrial functioning including the regulation of cytochrome c release during apoptosis and proper electron transport. Mitochondrial cardiolipin with its unique bulky amphipathic structure is a potential substrate for phospholipase A2 (PLA2) in vivo. We have developed mass spectrometric methodology for analyzing PLA2 activity toward various cardiolipin forms and demonstrate that cardiolipin is a substrate for sPLA2, cPLA2 and iPLA2, but not for Lp-PLA2. Our results also show that none of these PLA2s have significant PLA1 activities toward dilyso-cardiolipin. To understand the mechanism of cardiolipin hydrolysis by PLA2, we also quantified the release of monolyso-cardiolipin and dilyso-cardiolipin in the PLA2 assays. The sPLA2s caused an accumulation of dilyso-cardiolipin, in contrast to iPLA2 which caused an accumulation of monolyso-cardiolipin. Moreover, cardiolipin inhibits iPLA2 and cPLA2, and activates sPLA2 at low mol fractions in mixed micelles of Triton X-100 with the substrate 1-palmitoyl-2-arachidonyl-sn-phosphtidylcholine. Thus, cardiolipin functions as both a substrate and a regulator of PLA2 activity and the ability to assay the various forms of PLA2 is important in understanding its function.  相似文献   

13.
D-alanine carboxypeptidase from Streptococcus faecalis   总被引:1,自引:0,他引:1  
A particulate D-alanine carboxypeptidase that can cleave the terminal residue of D-alanine from UDPMurNAc-L-ala-D-isoglu-L-lys-D-ala-D-ala was isolated from Streptococcus faecalis. The enzyme was inhibited by penicillin G non-competitively with a Ki of 0.8 μM.The carboxypeptidase was solubilized with Triton X-100 without loss of catalytic activity. In this form it could also be inhibited by penicillin G.  相似文献   

14.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

15.
Cytochrome bc1 isolated from Triton X-100-solubilized mitochondrial membranes contains up to 120 nmol of Triton X-100 bound per nanomole of the enzyme. Purified cytochrome bc1 is fully active; however, protein-bound Triton X-100 significantly interferes with structural studies of the enzyme. Removal of Triton X-100 bound to bovine cytochrome bc1 was accomplished by incubation with Bio-Beads SM-2 in the presence of sodium cholate. Sodium cholate is critical because it does not interfere with the adsorption of protein on the hydrophobic surface of the beads. The resulting Triton X-100-free cytochrome bc1 retained nearly full activity, absorption spectra, subunit, and phospholipid composition.  相似文献   

16.
Summary Rainbow trout (Salmo gairdneri) acclimated to 5°C or 20°C were administered 2-3H-glycerol and 1-14C-acetate (63 Ci of each isotope/100 g body weight) via intraperitoneal injection, and subsequently maintained at their respective acclimation temperatures. Total lipid extracts (>80% phospholipid) were prepared from isolated microsomes of liver, gill and muscle tissue at various times over a three week period. Half-lives were determined independently for the fatty acyl and glycerol moieties from slopes of regression lines relating dpm/nmole phospholipidP i vs time. In liver tissue, rates of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) turnover were also determined. Membrane turnover was most rapid in liver followed by gill and muscle. In liver, membrane fatty acids turned over more rapidly in warm-(t 1/2=3.4 days) than in cold-(t 1/2=6.8 days) acclimated fish, whereas in gill, rates of fatty acid turnover, did not differ significantly between acclimation groups. In contrast, rates of glycerol turnover were independent of acclimation temperature in liver, but faster (t 1/2=6.7 days) in warm- than cold- (t 1/2=15.1 days) acclimated fish in gill. In total lipid extracts, rates of fatty acid and glycerol turnover were equivalent in warm-acclimated fish, however, in cold-acclimated trout, there was a tendency for fatty acids (t 1/2=9.1 days) to turnover more rapidly than glycerol (t 1/2=15.1 days) in gill tissue, but more slowly (t 1/2=6.82 days) than glycerol (t 1/2=4.1 days) in liver. Although rates of glycerol turnover were equivalent in PC and PE of liver microsomes, the fatty acyl component turned over significantly more rapidly in PC at both acclimation temperatures. In cold-acclimated trout, rates of fatty acid and glycerol turnover were equivalent in PE, but the fatty acyl moiety of PC (t 1/2=4.7 days) turned over significantly more rapidly than glycerol (t 1/2=7.5 days). These results were interpreted as indicating that: (1) acclimation temperature independently influenced rates of fatty acid and glycerol turnover in a tissue specific manner, (2) a deacylation-reacylation pathway was activated in both liver and gill as a consequence of cold acclimation, but that liver tissue was more effective than gill in reutilizing the fatty acids released by phospholipase activity, and (3), in liver microsomes, patterns of turnover were phospholipid specific, with PC and PE differing either in the susceptibility of their acyl groups to degradation, or in their ability to reutilize fatty acids cleaved during membrane turnover at cold temperatures.  相似文献   

17.
A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1′-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 μM, respectively. The enzyme had no activity with 1-alk-1′-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first ~40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  相似文献   

18.
Cytochrome P-448, a type of cytochrome P-450, from brewer's yeast (Saccharomyces cerevisiae) grown under conditions of glucose repression was isolated and purified. Triton X-100 in very low concentration proved to be very effective in stabilizing P-448 in the microsomal fraction and later prevented its conversion to cytochrome P-420 through solubilization with various ionic and nonionic detergents. Highest yields were obtained with 1% sodium cholate, in the presence of 0.1% Triton X-100 and reduced glutathione. A novel combination of hydrophobic adsorption and other chromatographic techniques was used for the purification of cytochrome P-448. These involve the use of amino octyl-Sepharose 4B, instead of the low-yielding aminohexyl derivative, followed by the fast-running hydroxyapatite-cellulose column. Finally, the use of DEAE-Sephacel was found to increase greatly the purity of the cytochrome P-448 obtained. The molecular weight of this preparation was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr, 55,500). Using the known molar extinction coefficient of the carbon monoxide-difference spectrum the estimate of degree of purity of cytochrome P-448 obtained by this purification procedure was between 88 and 97%. Electrophoresis also showed that this preparation was completely homogeneous and assays showed that it was also completely free of cytochrome bs, cytochrome c reductase and cytochrome P-420. Purified cytochrome P-448 reconstituted with cytochrome P-450 (cytochrome c) reductase, isolated from yeast, showed 10-fold higher aryl hydrocarbon hydroxylase activity with benzo[a]pyrene as a substrate than the corresponding microsomal fraction enzyme. Kinetics of benzo[a]pyrene hydroxylation were determined: Km (33 μm) was comparable with that reported for purified hepatic cytochrome P-448. The number of binding sites of microsomal and purified cytochromes P-450 (from liver of phenobarbital-induced rats) and yeast cytochrome P-448 with benzo[a]pyrene has been determined using and equilibrium gel filtration method. There is one binding site in each case (contrast with six sites for microsomal enzymes). The Scatchard plot gives number of binding sites, apparent association constants (K), and the equivalent dissociation constants (Ks). Comparison is made with spectral dissociation constants for these enzymes and benzo[a]pyrene. Thus the proportion bound, dissociation constant (Ks), and stoichiometry of rat liver (phenobarbital induced) and yeast cytochrome P-448 with benzo[a]pyrene were compared with corresponding values for microsomal fractions of both systems. Purified enzymes had higher Ks values in both cases, and the proportion of enzyme that bound benzo[a]pyrene was high (53%) for liver and this value is 100% for purified enzyme from yeast, which is the same as the value obtained for the microsomal enzyme from yeast.  相似文献   

19.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

20.
Summary Aerial oxygen consumption of unrestrained, freely-diving warm-and cold-acclimated snapping turtles, Chelydra serpentina, was measured at 10, 20, and 30°C. Also, simultaneous determinations of aerial and aquatic oxygen uptake by voluntarilydiving animals were made at 4 and 20°C. The standard rates of aerial oxygen consumption are equivalent in cold-and warm-acclimated animals in water and in cold-acclimated ones in air; these rates are all lower than those of warm-acclimated animals in air. Thus either cold acclimation or voluntary submergence reduces the standard metabolic rate of snapping turtles but the effects are not additive. Aquatic oxygen uptake during voluntary submergence is more important at low than at moderate temperatures and probably contributes significantly to gas exchange in these animals as they overwinter beneath the ice of ponds and streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号