首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA.  相似文献   

2.
C Sun  T Tang  H Uludağ 《Biomacromolecules》2012,13(9):2982-2988
Understanding the molecular mechanism of DNA aggregation and condensation is of importance to DNA packaging in cells, and applications of gene delivery therapy. Modifying polycations such as polyethylenimine with lipid substitution was found to improve the performance of polycationic gene carriers. However, the role of the lipid substitution in DNA binding and aggregation is not clear and remains to be probed at the molecular level. In this work, we elucidated the role of lipid substitution through a series of all-atom molecular dynamics simulations on DNA aggregation mediated by lipid modified polyethylenimine (lmPEI). We found that the lipids associate significantly with one another, which links the lmPEIs and serves as a mechanism of aggregating the DNAs and stabilizing the formed polyplex. In addition, some lipid tails on the lmPEIs stay at the periphery of the lmPEI/DNA polyplex and may provide a mechanism for hydrophobic interactions. The enhanced stability and hydrophobicity might contribute to better cellular uptake of the polyplexes.  相似文献   

3.
The Hat1 histone acetyltransferase catalyzes the acetylation of H4 at lysines 5 and 12, the same sites that are acetylated in newly synthesized histone H4. By performing histone acetyltransferase (HAT) assays on various synthetic H4 N-terminal peptides, we have examined the interactions between Hat1 and the H4 tail domain. It was found that acetylation requires the presence of positively charged amino acids at positions 8 and 16 of H4, positions that are normally occupied by lysine; however, lysine per se is not essential and can be replaced by arginine. In contrast, replacing Lys-8 and -16 of H4 with glutamines reduces acetylation to background levels. Similarly, phosphorylation of Ser-1 of the H4 tail depresses acetylation by both yeast Hat1p and the human HAT-B complex. These results strongly support the model proposed by Ramakrishnan and colleagues for the interaction between Hat1 and the H4 tail (Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Cell 94, 427-438) and may have implications for the genetic analysis of histone acetylation. It was also found that Lys-12 of H4 is preferentially acetylated by human HAT-B, in further agreement with the proposed model of H4 tail binding. Finally, we have demonstrated that deletion of the hat1 gene from the fission yeast Schizosaccharomyces pombe causes increased sensitivity to the DNA-damaging agent methyl methanesulfonate in the absence of any additional mutations. This is in contrast to results obtained with a Saccharomyces cerevisiae hat1Delta strain, which must also carry mutations of the acetylatable lysines of H3 for heightened methyl methanesulfonate sensitivity to be observed. Thus, although the role of Hat1 in DNA damage repair is evolutionarily conserved, the ability of H3 acetylation to compensate for Hat1 deletion appears to be more variable.  相似文献   

4.
Understanding the molecular mechanisms behind regulation of chromatin folding through covalent modifications of the histone N-terminal tails is hampered by a lack of accessible chromatin containing precisely modified histones. We study the internal folding and intermolecular self-association of a chromatin system consisting of saturated 12-mer nucleosome arrays containing various combinations of completely acetylated lysines at positions 5, 8, 12 and 16 of histone H4, induced by the cations Na(+), K(+), Mg(2+), Ca(2+), cobalt-hexammine(3+), spermidine(3+) and spermine(4+). Histones were prepared using a novel semi-synthetic approach with native chemical ligation. Acetylation of H4-K16, but not its glutamine mutation, drastically reduces cation-induced folding of the array. Neither acetylations nor mutations of all the sites K5, K8 and K12 can induce a similar degree of array unfolding. The ubiquitous K(+), (as well as Rb(+) and Cs(+)) showed an unfolding effect on unmodified arrays almost similar to that of H4-K16 acetylation. We propose that K(+) (and Rb(+)/Cs(+)) binding to a site on the H2B histone (R96-L99) disrupts H4K16 ε-amino group binding to this specific site, thereby deranging H4 tail-mediated nucleosome-nucleosome stacking and that a similar mechanism operates in the case of H4-K16 acetylation. Inter-array self-association follows electrostatic behavior and is largely insensitive to the position or nature of the H4 tail charge modification.  相似文献   

5.
The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.  相似文献   

6.
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.  相似文献   

7.
Using (13)C spin relaxation NMR in combination with molecular dynamic (MD) simulations, we characterized internal motions within double-stranded DNA on the pico- to nano-second time scale. We found that the C-H vectors in all cytosine ribose moieties within the Dickerson-Drew dodecamer (5'-CGCGAATTCGCG-3') are subject to high amplitude motions, while the other nucleotides are essentially rigid. MD simulations showed that repuckering is a likely motional model for the cytosine ribose moiety. Repuckering occurs with a time constant of around 100 ps. Knowledge of DNA dynamics will contribute to our understanding of the recognition specificity of DNA-binding proteins such as cytosine methyltransferase.  相似文献   

8.
DNA and its counterions: a molecular dynamics study   总被引:2,自引:7,他引:2       下载免费PDF全文
The behaviour of mobile counterions, Na+ and K+, was analysed around a B-DNA double helix with the sequence CCATGCGCTGAC in aqueous solution during two 50 ns long molecular dynamics trajectories. The movement of both monovalent ions remains diffusive in the presence of DNA. Ions sample the complete space available during the simulation time, although individual ions sample only about one-third of the simulation box. Ions preferentially sample electronegative sites around DNA, but direct binding to DNA bases remains a rather rare event, with highest site occupancy values of <13%. The location of direct binding sites depends greatly on the nature of the counterion. While Na+ binding in both grooves is strongly sequence-dependent with the preferred binding site in the minor groove, K+ mainly visits the major groove and binds close to the centre of the oligomer. The electrostatic potential of an average DNA structure therefore cannot account for the ability of a site to bind a given cation; other factors must also play a role. An extensive analysis of the influence of counterions on DNA conformation showed no evidence of minor groove narrowing upon ion binding. A significant difference between the conformations of the double helix in the different simulations can be attributed to extensive α/γ transitions in the phosphate backbone during the simulation with Na+. These transitions, with lifetimes over tens of nanoseconds, however, appear to be correlated with ion binding to phosphates. The ion-specific conformational properties of DNA, hitherto largely overlooked, may play an important role in DNA recognition and binding.  相似文献   

9.
Mu Y  Stock G 《Biophysical journal》2006,90(2):391-399
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.  相似文献   

10.
A series of molecular dynamics simulations have been used to investigate the nature of monomeric and dimeric insulin in aqueous solution. It is shown that in the absence of crystal contacts both monomeric and dimeric insulin have a high degree of intrinsic flexibility. Neither of the two monomer conformations of 2Zn crystalline insulin appears to be favored in solution nor is the asymmetry of the crystal dimer reduced in the absence of crystal contacts. A shift is observed in the relative positions of molecules 1 and 2 in the dimer compared with that found in the crystal, which may have consequences for the prediction of the effects of mutants in the monomer-monomer interface designed to alter the self-association properties of insulin.  相似文献   

11.
Nucleosome–nucleosome interaction plays a fundamental role in chromatin folding and self-association. The cation-induced condensation of nucleosome core particles (NCPs) displays properties similar to those of chromatin fibers, with important contributions from the N-terminal histone tails. We study the self-association induced by addition of cations [Mg2+, Ca2+, cobalt(III)hexammine3+, spermidine3+ and spermine4+] for NCPs reconstituted with wild-type unmodified histones and with globular tailless histones and for NCPs with the H4 histone tail having lysine (K) acetylations or lysine-to-glutamine mutations at positions K5, K8, K12 and K16. In addition, the histone construct with the single H4K16 acetylation was investigated. Acetylated histones were prepared by a semisynthetic native chemical ligation method. The aggregation behavior of NCPs shows a general cation-dependent behavior similar to that of the self-association of nucleosome arrays. Unlike nucleosome array self-association, NCP aggregation is sensitive to position and nature of the H4 tail modification. The tetra-acetylation in the H4 tail significantly weakens the nucleosome–nucleosome interaction, while the H4 K → Q tetra-mutation displays a more modest effect. The single H4K16 acetylation also weakens the self-association of NCPs, which reflects the specific role of H4K16 in the nucleosome–nucleosome stacking. Tailless NCPs can aggregate in the presence of oligocations, which indicates that attraction also occurs by tail-independent nucleosome–nucleosome stacking and DNA–DNA attraction in the presence of cations. The experimental data were compared with the results of coarse-grained computer modeling for NCP solutions with explicit presence of mobile ions.  相似文献   

12.
To effectively modulate the gene expression within an infected mammalian cell, the pathogen Mycobacterium tuberculosis would need to bring about epigenetic modifications at appropriate genomic loci. Working on this hypothesis, we show in this study that the mycobacterial protein Rv2966c is a 5-methylcytosine-specific DNA methyltransferase that is secreted out from the mycobacterium and gets localized to the nucleus in addition to the cytoplasm inside the host cell. Importantly, Rv2966c binds to specific DNA sequences, methylates cytosines predominantly in a non-CpG context and its methylation activity is positively influenced by phosphorylation. Interestingly, like the mammalian DNA methyltransferase, DNMT3L, Rv2966c can also interact with histone proteins. Ours is the first study that identifies a protein from a pathogenic bacteria with potential to influence host DNA methylation in a non-canonical manner providing the pathogen with a novel mechanism to alter the host epigenetic machinery. This contention is supported by repression of host genes upon M. tuberculosis infection correlated with Rv2966c binding and non-CpG methylation.  相似文献   

13.
Hydration pattern and energetics of 'A-tract' containing duplexes have been studied using molecular dynamics on 12-mer self-complementary sequences 5'-d(GCA4T4GC)-3' and 5'-d(CGT4A4CG)-3'. The structural features for the simulated duplexes showed correlation with the corresponding experimental structures. Analysis of the hydration pattern confirmed that water network around the simulated duplexes is more conformation specific rather than sequence specific. The calculated heat capacity change upon duplex formation showed that the process is entropically driven for both the sequences. Furthermore, the theoretical free energy estimates calculated using MMPBSA approach showed a higher net electrostatic contribution for A4T4 duplex formation than for T4A4, however, energetically both the duplexes are observed to be equally stable.  相似文献   

14.
In this work, we used antibodies against histone H3 trimethylated at lysine 9 (H3K9m3); against histone H4 acetylated at lysines 5, 8, 12, and 16 (H4ac); and against DNA methylated at 5C cytosine (m5C) to study the presence and distribution of these markers in the genome of the isopod crustacean Asellus aquaticus. The use of these 3 antibodies to immunolabel spermatogonial metaphases yields reproducible patterns on the chromosomes of this crustacean. The X and Y chromosomes present an identical banding pattern with each of the antibodies. The heterochromatic telomeric regions and the centromeric regions are rich in H3K9m3, but depleted in m5C and H4ac. Thus, m5C does not seem to be required to stabilize the silence of these regions in this organism.  相似文献   

15.
Neuromyelitis optica (NMO) is a multiple sclerosis-like immunopathology disease affecting optic nerves and the spinal cord. Its pathological hallmark is the deposition of a typical immunoglobulin, called NMO-IgG, against the water channel Aquaporin-4 (AQP4). Preventing NMO-IgG binding would represent a valuable molecular strategy for a focused NMO therapy. The recent observation that aspartate in position 69 (D69) is determinant for the formation of NMO-IgG epitopes prompted us to carry out intensive Molecular Dynamics (MD) studies on a number of single-point AQP4 mutants. Here, we report a domino effect originating from the point mutation at position 69: we find that the side chain of T62 is reoriented far from its expected position leaning on the lumen of the pore. More importantly, the strength of the H-bond interaction between L53 and T56, at the basis of the loop A, is substantially weakened. These events represent important pieces of a clear-cut mechanistic rationale behind the failure of the NMO-IgG binding, while the water channel function as well as the propensity to aggregate into OAPs remains unaltered. The molecular interaction fields (MIF)-based analysis of cavities complemented MD findings indicating a putative binding site comprising the same residues determining epitope reorganization. In this respect, docking studies unveiled an intriguing perspective to address the future design of small drug-like compounds against NMO. In agreement with recent experimental observations, the present study is the first computational attempt to elucidate NMO-IgG binding at the molecular level, as well as a first effort toward a less elusive AQP4 druggability.  相似文献   

16.
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.  相似文献   

17.
18.

Background

Histone demethylase, JMJD2A, specifically recognizes and binds to methylated lysine residues at histone H3 and H4 tails (especially trimethylated H3K4 (H3K4me3), trimethylated H3K9 (H3K9me3) and di,trimethylated H4K20 (H4K20me2, H4K20me3)) via its tandem tudor domains. Crystal structures of JMJD2A-tudor binding to H3K4me3 and H4K20me3 peptides are available whereas the others are not. Complete picture of the recognition of the four histone peptides by the tandem tudor domains yet remains to be clarified.

Methodology/Principal Findings

We report a detailed molecular dynamics simulation and binding energy analysis of the recognition of JMJD2A-tudor with four different histone tails. 25 ns fully unrestrained molecular dynamics simulations are carried out for each of the bound and free structures. We investigate the important hydrogen bonds and electrostatic interactions between the tudor domains and the peptide molecules and identify the critical residues that stabilize the complexes. Our binding free energy calculations show that H4K20me2 and H3K9me3 peptides have the highest and lowest affinity to JMJD2A-tudor, respectively. We also show that H4K20me2 peptide adopts the same binding mode with H4K20me3 peptide, and H3K9me3 peptide adopts the same binding mode with H3K4me3 peptide. Decomposition of the enthalpic and the entropic contributions to the binding free energies indicate that the recognition of the histone peptides is mainly driven by favourable van der Waals interactions. Residue decomposition of the binding free energies with backbone and side chain contributions as well as their energetic constituents identify the hotspots in the binding interface of the structures.

Conclusion

Energetic investigations of the four complexes suggest that many of the residues involved in the interactions are common. However, we found two receptor residues that were related to selective binding of the H3 and H4 ligands. Modifications or mutations on one of these residues can selectively alter the recognition of the H3 tails or the H4 tails.  相似文献   

19.
Linker histone H1 plays an important role in chromatin folding. Phosphorylation by cyclin-dependent kinases is the main post-translational modification of histone H1. We studied the effects of phosphorylation on the secondary structure of the DNA-bound H1 carboxy-terminal domain (CTD), which contains most of the phosphorylation sites of the molecule. The effects of phosphorylation on the secondary structure of the DNA-bound CTD were site-specific and depended on the number of phosphate groups. Full phosphorylation significantly increased the proportion of β-structure and decreased that of α-helix. Partial phosphorylation increased the amount of undefined structure and decreased that of α-helix without a significant increase in β-structure. Phosphorylation had a moderate effect on the affinity of the CTD for the DNA, which was proportional to the number of phosphate groups. Partial phosphorylation drastically reduced the aggregation of DNA fragments by the CTD, but full phosphorylation restored to a large extent the aggregation capacity of the unphosphorylated domain. These results support the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of H1 partial phosphorylation in interphase chromatin relaxation. More generally, our results suggest that the effects of phosphorylation are mediated by specific structural changes and are not simply a consequence of the net charge.  相似文献   

20.
In this paper we present a methodology to evaluate the binding free energy of a miRNA:mRNA complex through molecular dynamics (MD)–thermodynamic integration (TI) simulations. We applied our method to the Caenorhabditis elegans let-7 miRNA:lin-41 mRNA complex—a validated miRNA:mRNA interaction—in order to estimate the energetic stability of the structure. To make the miRNA:mRNA simulation possible and realistic, the methodology introduces specific solutions to overcome some of the general challenges of nucleic acid simulations and binding free energy computations that have been discussed widely in many previous research reports. The main features of the proposed methodology are: (1) positioning of the restraints imposed on the simulations in order to guarantee complex stability; (2) optimal sampling of the phase space to achieve satisfactory accuracy in the binding energy value; (3) determination of a suitable trade-off between computational costs and accuracy of binding free energy computation by the assessment of the scalability characteristics of the parallel simulations required for the TI. The experiments carried out demonstrate that MD simulations are a viable strategy for the study of miRNA binding characteristics, opening the way to the development of new computational target prediction methods based on three-dimensional structure information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号