首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating long-term population trends is vital for the conservation and management of species, yet few trends exist and fewer still are verified with independent measures. We compared three independent measures of change in population size over 27 years (1984–2011) for a significant Little Penguin Eudyptula minor colony in south-eastern Australia: (1) a series of 13 colony-wide surveys conducted in eight separate years, (2) mean nightly counts of penguins returning to breeding sites (365 counts × 27 years) and (3) population growth rates from a demographic model based on survival and recruitment rates measured at three sites each year. Colony-wide surveys of burrows were used as a benchmark of change in population size in the 8 years they were conducted as they were a robust measure of population size corrected for intra-annual variation in burrow occupancy using mark-recapture modelling at six reference sites. However, the demographic model matched the trend from colony-wide surveys with greater resolution in years and with less effort. Beach counts were unreliable for monitoring trends for the entire population due to its singular and peripheral location in the colony. Trends indicate a doubling of the population from 1984 to 2011 despite a marked population contraction linked to a mass mortality of a key prey species. The colony appears secure but remains subject to changes in the marine and terrestrial environments in the longer term.  相似文献   

2.
To devise effective conservation actions, it is important to know which factors are associated with the population parameters of a declining population. Using mark–recapture methods, we estimated the annual population size, growth rate and survival probability of an ear-tagged flying squirrel population over a 15-year period in a 4,500 ha study area in western Finland. The species is considered vulnerable, but detailed knowledge concerning population sizes or trends is lacking. The population parameters and changes therein were regressed against habitat availability, an indicator of predation pressure, and mean winter temperature (an indicator of climate change), to reveal potential reasons for trends in the population. The best-fit models suggested the annual growth rate to be below one, and on average it was 0.93 (±0.06; SE) across the 15-year period. The survival probability was about 0.22 (±0.03) for juveniles and 0.50 (±0.03) for adults. The population size of adult flying squirrels decreased from 65 (±11) individuals in 1995 to 29 (±6) individuals in 2009. The number of flying squirrels was associated with the amount of available habitat, but the decline in population size was more rapid than the loss of habitat area. If the current decreasing trend in habitat availability continues, the population might become extinct by the year 2020. To halt the population decline, it is necessary to refrain from clear-cutting mature spruce stands until new suitable habitats develop from the maturation of younger forests.  相似文献   

3.
Assessing the status and trends in animal populations is essential for effective species conservation and management practices. However, unless time-series abundance data demonstrate rapid and reliable fluctuations, objective appraisal of directionality of trends is problematic. We adopted a multiple-working hypotheses approach based on information-theoretic and Bayesian multi-model inference to examine the population trends and form of intrinsic regulation demonstrated by a long-lived species, the southern elephant seal. We also determined the evidence for density dependence in 11 other well-studied marine mammal species. (1) We tested the type of population regulation for elephant seals from Marion Island (1986–2004) and from 11 other marine mammal species, and (2) we described the trends and behavior of the 19-year population time series at Marion Island to identify changes in population trends. We contrasted five plausible trend models using information-theoretic and Bayesian-inference estimates of model parsimony. Our analyses identified two distinct phases of population growth for this population with the inflexion occurring in 1998. Thus, the population decreased between 1986 and 1997 (−3.7% per annum) and increased between 1997 and 2004 (1.9% per annum). An index of environmental stochasticity, the Southern Oscillation Index, explained some of the variance in r and N. We determined analytically that there was good evidence for density dependence in the Marion Island population and that density dependence was widespread among marine mammal species (67% of species showed evidence for population regulation). This approach demonstrates the potential functionality of a relatively simple technique that can be applied to short time series to identify the type of regulation, and the uncertainty associated with the phenomenon, operating in populations of large mammals.  相似文献   

4.
Phenological shifts linked to global warming reflect the ability of organisms to track changing climatic conditions. However, different organisms track global warming differently and there is an increasing interest in the link between phenological traits and plant abundance and distribution. Long-term data sets are often used to estimate phenological traits to climate change, but so far little has been done to evaluate the quality of these estimates. Here, we use a 73-year long data series of first flowering dates for 25 species from north-temperate Sweden to evaluate (i) correlations between first flowering dates and year for different time periods and (ii) linear regression models between first flowering date and mean monthly temperatures in preceding months. Furthermore, we evaluate the potential of this kind of data to estimate the phenological temperature sensitivities (i.e. number of days phenological change per degree temperature change, β60) in such models. The sign of the correlations between first flowering dates and year were highly inconsistent among different time periods, highlighting that estimates of phenological change are sensitive to the specific time period used. The first flowering dates of all species were correlated with temperature, but with large differences in both the strength of the response and the period(s) of the year that were most strongly associated with phenological variation. Finally, our analyses indicated that legacy data sets need to be relatively long-term to be useful for estimating phenological temperature sensitivities (β60) for inter-specific comparisons. In 10-year long observation series only one out of 24 species reached ≥80 % probability of estimating temperature sensitivity (β60) within a ±1 range, and 17 out of 24 species reached ≥80 % probability when observation series were 20 years or shorter. The standard error for β60 ranged from 0.6 to 2.0 for 10-year long observation series, and 19 out of 24 species reached SE < 1 after 15 years. In general, late flowering species will require longer time series than early flowering species.  相似文献   

5.
Accurate, long-term population estimates of invasive vertebrate pests are a key element of ecosystem management. Not only can they clarify the role of invasive species in changing ecosystem dynamics, they are also necessary to evaluate and assess management actions. Rabbits were first introduced to sub-Antarctic Macquarie Island in the 1870s, and since the 1960s have been targeted and influenced by a range of management programs. Here, for the first time, we model population trends of rabbits on Macquarie Island from the beginning of these management actions to the end of a recent, successful eradication attempt. We show that over a 38-year time frame, the population has undergone substantial fluctuations, peaking at over 350,000 individuals (27 indiv ha?1) in the late 1970s, before declining to less than 30,000 individuals (2–3 indiv ha?1) through the 1980s and early 1990s. From the late 1990s to 2005, the population increased relatively rapidly, this time peaking at approximately 221,000 individuals. After the commencement of eradication operations in 2010, the population dropped sharply, decreasing from 135,707 ± 25,995 to effectively zero in just over 12 months. This research contributes to our understanding of the complex population dynamics of sub-Antarctic invasive species and highlights the importance of monitoring in planning, understanding and assessing management actions. The development of models described here allowed population trends to be identified on Macquarie Island, despite ‘noise’ in the data from seasonality or sporadic observations. In consequence, the impacts of both long- and short-term management actions could be quantified. These techniques are applicable to other locations and species where long-term census data exist.  相似文献   

6.
The Irish Butterfly Monitoring Scheme started in 2007. The main objective of this study was to examine initial population trends from data gathered over 5 years (2008–2012) by approximately 150 volunteers across the Republic of Ireland. Nine of the 15 species analysed showed changes in population over the 5-year period; three species showed steep or moderate increases while six species showed moderate or steep declines in population. Some of these population changes are due to the highly variable weather conditions over the five years of monitoring, particularly the unusually cool, wet summer of 2012. However, factors affecting butterfly population trends are many and varied, so longer-term data are required to assess trends more reliably. A further six species had indeterminate trends over the 5-year period however, as the scheme develops, longer-term trends will have greater statistical reliability and give a clearer insight into Irish butterfly populations. The Irish Butterfly Monitoring Scheme is important in the national context, as there is little other countrywide systematic monitoring of insect populations. Furthermore, with a growing number of such standardised monitoring schemes internationally and development of bioindicators, it is now possible to monitor and track butterfly populations at larger spatial scales. We recommend that the Irish Butterfly Monitoring Scheme is continued over the long term and expanded to ensure that more Irish butterfly species are sufficiently monitored. However, in addition to monitoring population trends, basic research is still needed into the ecology and population dynamics of common butterfly species.  相似文献   

7.
Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR) data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females, not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns apply equally to population assessments of all species with imperfect detection.  相似文献   

8.
Mortality, a critical parameter for population dynamics, is difficult to measure in long-lived trees or clonal herbaceous species because of the extremely low frequency of deaths. A model based on shoot recruitment would be helpful to estimate the population fate of species without a sufficient number of observed deaths. Existing matrix models are applicable to the dynamics of physiologically independent shoots, but not to physiologically dependent ones. We developed a shoot-dynamics model for plants with physiologically-dependent shoots, and used the model to estimate the effects of herbivory and conservation measures on the dynamics of a long-lived, shoot-sprouting shrub species, Paliurus ramosissimus (Rhamnaceae). Two populations of the endangered shrub have been severely damaged by herbivory by sika deer. The damage was mainly to new sprouting shoots. No deaths of individual plants were observed during an 8-year survey, and we could not estimate mortality. Thus, prediction of population dynamics based on births and deaths of individuals was impossible. Because P. ramosissimus is a shoot-sprouting species, we instead estimated the decline of individuals using a shoot-dynamics model. Using this model, we estimated the time to an 80 % decrease in shoot number per individual in the two populations at 37.8 and 37.2 years. These lengths suggest an immediate need for conservation measures to prevent herbivory even though no death of any individual was observed in the field survey. The estimated recovery times from the herbivory damage were 28.7 and 29.2 years if herbivory of new shoots is completely prevented by conservation measure.  相似文献   

9.
The finless porpoise Neophocaena asiaeorientalis inhabits coastal waters and rivers in East Asia and is exposed to various human activities. This species is listed on the IUCN Red List of Threatened Species due to a reduction in abundance. Although human-induced mortality can be a threat to porpoise populations, future anthropogenic impacts have not been quantitatively evaluated due to lack of demographic information. Adequate future population projections are needed to form the basis for conservation measures before the population declines to critical levels. We conducted a population viability analysis for the population of finless porpoise in the Inland Sea, Japan using a Leslie matrix model composed of age-specific survival and fertility rates. We described the uncertainty in the annual rate of increase (λ) for the finless porpoise using randomly sampled estimates of survival rate for other cetaceans with similar life histories. Plausible median estimates of λ ranged from 1.041 (age at first reproduction [AFR] = 7) to 1.056 (AFR = 5). Future population changes and extinction probabilities were predicted after combining these estimates with a predicted human-induced mortality rate (M) and available abundance estimates. The extinction probability after 100 years was 0 %. However, the probability of the quasi-extinction (<100 individuals) was as high as 79.0 % after 100 years. The results also suggest that the persistence of the finless porpoise population could be achieved with a small effort to reduce anthropogenic mortality.  相似文献   

10.
A species distribution combines the resources and climatic tolerances that allow an individual or population to persist. As these conditions change, one mechanism to maintain favorable resources is for an organism to shift its range. Much of the research examining range shifts has focused on dynamic distribution boundaries wheras the role of species breeding habitat or migration strategies on shift tendencies has received less attention. We expand on previous research by using a large suite of avian species (i.e., 277), analyzing observed abundance-weighted average latitudes, and categorizing species by breeding environment and migration strategy. We used the North American Breeding Bird Survey dataset to address two questions: (1) Has the center of observed abundance for individual species shifted latitudinally? (2) Is there a relationship between migration strategy or breeding habitat and range shifts? Results indicate the majority of species have experienced poleward range shifts over the last 43 years, and birds breeding in all habitat showed trends of poleward shift but only those species breeding in scrub-shrub and grassland environments were different from zero. Additionally, species that are short distance migrants are experiencing significant poleward shifts while Neotropical and permanent residents had shifts that were not different from zero. Our findings do support the general trend expected from climate driven changes (i.e., > 52 % shifting poleward), however, the proportion of species exhibiting equatorial shifts (24 %) or no significant shifts (23 %) illustrates the complex interplay between land cover, climate, species interactions, and other forces that can interact to influence breeding ranges over time. Regardless of the mechanisms driving range shifts, our findings emphasize the need for connecting and expanding habitats for those species experiencing range shifts. This research describes the patterns of breeding birds through central North America and we encourage future research to focus on the mechanisms driving these patterns.  相似文献   

11.
Understanding the dynamics and causes of population trends are essential for seabird conservation. Long-term studies of seabirds at high-latitude (Antarctic, sub-Antarctic and Arctic) regions have shown contrasting species-specific trends in population size in response to climate change and anthropogenic pressures. We have studied for the last 20 years (1992–2012) the population trends of seven seabird species that breed in the Beagle Channel, south-eastern Tierra del Fuego and at Staten Island, a sub-Antarctic region in southern Argentina. The numbers of Magellanic and Gentoo Penguins increased significantly since 1992 (by >15 % year?1). In comparison, the populations of Imperial Cormorants, Dolphin Gulls and Kelp Gulls increased at slower rates (<5 % year?1), while the Rock Cormorant population even decreased by 1.3 % year?1. At Staten Island, the numbers of Rockhopper Penguins decreased by 24 % between the censuses of 1998 and 2010, whereas the population of Magellanic Penguins increased by 227 % during the same period. Over the study period, air and sea-surface temperatures remained stable in our study area, suggesting that the detected population changes are not driven by the climate. This finding contrasts with the detected links between increasing temperature trends and seabird population changes reported from Antarctic and Arctic regions. The level of tourism and size of the permanent human population has increased in the Beagle Channel area during the last 20 years and could be responsible for the increase of gull populations. The seabird species that received the highest number of visitors (Imperial Cormorants and penguin species) seem to be adapted or at least indifferent to pressures exerted by tourism, as their populations increased during the study period. In addition, increasing numbers of seabirds in the area may generally be leading to higher abundances of scavenging species (e.g. gulls).  相似文献   

12.
Regeneration mode is one of the key attributes determining population structure and dynamics of plant species. We investigated long-term patterns after fire in the cover of plant species in a 100-year chronosequence of burned Pinus brutia forests in a humid Mediterranean climate region in Turkey. Significant trends were present in the change of cover in major species through post-fire chronosequence, and species with similar trends were clustered in relation to their regeneration modes. Obligate resprouters increased their cover from the early post-fire years to the later stages, while cover of obligate seeders with a soil seed bank increased in the early years, but then decreased through time. Facultative resprouters were at an intermediate position, with an increase in cover until mid-successional stages and then a decrease through time. The cover of the only obligate seeder with a canopy seed bank (P. brutia) followed a linear increasing trend during the succession. When species with the same regeneration mode were grouped, the same trends were observed with more explained variances. A few life-history traits were enough to explain the observed trends. Our study shows that regeneration mode is an explanatory functional grouping system for describing long-term post-fire dynamics of Mediterranean Basin woody species. We suggest that regeneration mode must be a major component of any vegetation or forest stand dynamics model in the Mediterranean Basin. This result has important implications for the management of Mediterranean Basin ecosystems, and can potentially be extrapolated to other Mediterranean-type fire-prone ecosystems.  相似文献   

13.
A new approach to determining sampling effort for analyzing biofilm-dwelling ciliate colonization was studied in the coastal waters of the Yellow Sea, northern China, from May to June 2010. The optimal sample size for evaluating biofilm-dwelling ciliate colonization increased with shortening exposure time, and can be determined according to the probability of recovering those species with a specified cumulative contribution to communities. More slide-replicates were required at a depth of 3 m than at 1 m to recover equivalent proportions of the ciliate communities. For routine colonization dynamics analyses, 10 slide-replicates (175 cm2) were sufficient to achieve a 95% probability of recovering those species with a cumulative contribution of >90% to the ciliate communities at a depth of 1 m. These results suggest that 10 slide-replicates immersed at a depth of 1 m may be an optimal sampling strategy for analyzing the colonization dynamics of biofilm-dwelling ciliate communities in marine habitats.  相似文献   

14.
Twenty-five-year population trends of 42 bird species rare as breeders in the UK were examined in relation to changes in climatic suitability simulated using climatic envelope models. The effects of a series of potential 'nuisance' variables were also assessed. A statistically significant positive correlation was found across species between population trend and climate suitability trend. The demonstration that climate envelope models are able to retrodict species' population trends provides a valuable validation of their use in studies of the potential impacts of future climatic changes.  相似文献   

15.
Abundance data are widely used to monitor long-term population trends for management and conservation of species of interest. Programs that collect count data are often prohibitively expensive and time intensive, limiting the number of species that can be simultaneously monitored. Presence data, on the other hand, can often be collected in less time and for multiple species simultaneously. We investigate the relationship of counts to presence using 49 butterfly species across 4 sites over 9 years, and then compare trends produced from each index. We also employed simulated datasets to test the effect of reduced sampling on the relationship of counts to presence data and to investigate changes in each index’s power to reveal population trends. Presence and counts were highly correlated for most species tested, and population trends based on each index were concordant for most species. The effect of reduced sampling was species-specific, but on a whole, sensitivity of both indices to detect population trends was reduced. Common and rare species, as well as those with a range of life-history and behavioral traits performed equally well. The relationship between presence and count data may break down in cases of very abundant and widespread species with extended flight seasons. Our results suggest that when used cautiously, presence data has the potential to be used as a surrogate for counts. Collection of presence data may be useful for multi-species monitoring or to reduce the duration of monitoring visits without fully sacrificing the ability to infer population trends.  相似文献   

16.
In the high-arctic archipelago of Svalbard, the pink-footed goose (Anser brachyrhynchus) population has increased dramatically over the last decades. The population increase and the corresponding range expansion suggest a substantial increase in the potential for disturbance of the tundra caused by goose herbivory. In this study, we used surveys of pink-footed goose grubbing from two separate years (2007 and 2012) to examine the temporal changes in the prevalence of grubbing in central Spitsbergen. During this time period, the Svalbard-breeding pink-footed goose population had increased from 56,400 to 80,000 individuals. We compared grubbing prevalence between the 2 years, standardising the comparison by using a published model of habitat suitability for grubbing (Speed et al. in Ecosystems 12:349-359, 2009) as a covariate. Habitat suitability was a significant predictor of grubbing prevalence across both years, with higher grubbing probability in habitats predicted to be more suitable for grubbing. The probability of grubbing was on average 4 times higher in 2012 than in 2007. In 2007, all tundra habitats had a probability of <27 % of being grubbed whilst in 2012, there was a probability for being grubbed of more than 34 % in the least suitable habitat and around 59 % in the most suitable habitat. The increase in grubbing prevalence demonstrates a great need for monitoring the expanding pink-footed goose population and its impact on the tundra landscape.  相似文献   

17.
A plug-flow type anaerobic ammonium oxidation (anammox) reactor was developed using malt ceramics (MC) produced from carbonized spent grains as the biomass carriers for anammox sludge. Partial nitrified effluent of the filtrate from the sludge dehydrator of a brewery company was used as influent to a 20 L anammox reactor using MC. An average volumetric nitrogen removal rate (VNR) of 8.78 kg-N/m3/day was maintained stably for 76 days with 1 h of HRT. In a larger anammox reactor (400 L), an average VNR of 4.84 kg-N/m3/day could be maintained for 86 days during the treatment of low strength synthetic inorganic wastewater. As a result of bacterial community analysis for the 20 L anammox reactor, Asahi BRW1, probably originating from the wastewater collected at Asahi Breweries, was detected as the dominant anammox bacterium. These anammox reactors were characterized by a high NH4-N removal capacity for low strength wastewater with a short hydraulic retention time.  相似文献   

18.
Invasive species threaten endangered species worldwide and substantial effort is focused on their control. Eradication projects require critical resource allocation decisions, as they affect both the likelihood of success and the overall cost. However, these complex decisions must often be made within data-poor environments. Here we develop a mathematical framework to assist in resource allocation for invasive species control projects and we apply it to the proposed eradication of the tropical fire ant (Solenopsis geminata) from the islands of Ashmore Reef in the Timor Sea. Our framework contains two models: a population model and a detection model. Our stochastic population model is used to predict ant abundance through time and allows us to estimate the probability of eradication. Using abundance predictions from the population model, we use the detection model to predict the probability of ant detection through time. These models inform key decisions throughout the project, which include deciding how many baiting events should take place, deciding whether to invest in detector dogs and setting surveillance effort to confirm eradication following control. We find that using a combination of insect growth regulator and toxins are required to achieve a high probability of eradication over 2 years, and we find that using two detector dogs may be more cost-effective than the use of lure deployment, provided that they are used across the life of the project. Our analysis lays a foundation for making decisions about control and detection throughout the project and provides specific advice about resource allocation.  相似文献   

19.
The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.  相似文献   

20.
Migration monitoring may allow us to detect population trends over large geographic areas because the pattern of change in migrant counts may be expected to follow the pattern of change in population size. We analysed recent regional European population trends of migratory soaring birds from rates of change in migration counts over the Strait of Gibraltar (Spain) during the years (1999–2013). An additional bottleneck (Organbidexka, France) within the same migratory route and period was also considered. We estimated count trends by fitting a log-generalized linear model to the time series of each species counts. The counts in Organbidexka were used to test the consistency in the observed trends over the Strait of Gibraltar. Migration counts of White and Black Storks, Black Kites, Short-toed and Booted Eagles as well as Egyptian Vultures showed a linear increase over the Strait of Gibraltar throughout the 15-year period. In contrast, Honey Buzzard numbers remained stable. Trends were highly consistent with those recorded in Organbidexka. We suggest that the larger slopes for the trends in Organbidexka when compared with the Strait reflect an increasing tendency in these species to overwinter in southern Europe. A combination of complementary data sets collected at different bottleneck sites within the European–African flyway system may become a fundamental tool for the investigation of migratory patterns and population trends and changes of soaring migrant birds all over Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号