首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodothyronine 5'-deiodinase activity of rat liver microsomes was rapidly and completely lost by treatment with diethylpyrocarbonate (DEP) and by photo-oxidation with Rose Bengal (RB). In both cases inactivation followed pseudo first order reaction kinetics. Inactivation by DEP was diminished in the presence of substrate or competitive inhibitors, and was reversed by hydroxylamine treatment. In addition to photo-oxidation, deiodinase activity was also inhibited by RB in the dark. This inhibition was reversible and competitive with substrate (Ki 60 nM). These results suggest the location of an essential histidine residue at or near the active site of rat liver iodothyronine deiodinase.  相似文献   

2.
Trimethylarsine oxide is reduced to trimethylarsine in aqueous solution by a variety of thiols and dithiols including cysteine, glutathione, and lipoic acid. Kinetic results and other observations suggest that the rate-determining step is the production of [Me3AsSR]+ from an initially formed Me3As(SR)OH species, and that the reduction occurs via a two-electron transfer from Me3As(SR)2 affording Me3As and RS-SR. A simple model for the biological methylation of arsenic is proposed based on oxidative methylation of arsenic(III) by S-adenosylmethionine and reduction by a thiol such as lipoic acid.  相似文献   

3.
The binding of copper(II) and zinc(II) to oxidized glutathione   总被引:1,自引:0,他引:1  
1H and 13C NMR studies of Zn(II) binding to oxidized glutathione (GSSG) in aqueous solution over the pH range 4-11 show that it forms a complex with a 1:1 Zn:GSSG stoichiometry. At pH values between 6 and 11 the metal ligands are the COO- and NH2 groups of the glutamate residues. Below pH 5 the glycine end of the molecule also binds to the metal ions. EPR and visible absorption spectra of Cu(II) GSSG solutions suggest that similar complexes are formed with Cu(II). The solid products obtained from these solutions are shown by analysis and EPR to be primarily binuclear with Cu2GSSG stoichiometry, although the structures depend on the pH and stoichiometry of the solution from which they were obtained.  相似文献   

4.
Association of alkaline phosphatase with silicic acid in precipitates formed in dilute solution was studied as a model for the nonspecific reaction between silicic acid and protein. Precipitates contained 68-83% of the silicic acid and 52-83% of the enzyme in the original mixture and were in the form of aggregates of roundish particles 150-800 nm in diameter. Enzyme protein formed a tightly bound layer on the surface of particles formed in solutions of freshly prepared silicic acid. The similarity between the ultrastructural features of precipitates from solutions of silicic acid and of internal portions of siliceous urinary calculi from cattle suggests that deposition of silica during development of such calculi is due, at least in part, to the interaction of protein with silicic acid in urine.  相似文献   

5.
We have examined the thermodynamics of lanthanide ion binding to adriamycin by monitoring the effects of variations in temperature on the dissociation constants of various lanthanide ion complexes of the drug. These constants were obtained by analyzing the extent of quenching of the fluorecence of adriamycin in the presence of lanthanide ions in terms of an equilibrium binding process. Our binding model included the following features, all of which are supported by evidence derived from previous published reports, vide infra. The lanthanides form 1:1 complexes with adriamycin. The binding is dependent on the pH of the solution, indicating that only the nonprotonated amine form of the drug participates in lanthanide ion binding. And finally the drug self-associates in solution to for a dimeric species. Our present results indicate that the binding process is almost completely independent of temperature, indicating that the enthalpy of complex formation is extremely small. The entropy terms are consistent with the formation of a complex in which the adriamycin acts as a bidentate ligand. Our results suggest that the lanthanide complexes are isostructural, at least as far as the adriamycin is concerned, throughout the lanthanide series.  相似文献   

6.
Reactions of molybdenum-sulphur compounds with cyanide are reported which may be relevant to (1) the chemical evolution of molybdoenzymes and (2) deactivation of molybdoenzymes by cyanide. (1) With aqueous cyanide MoS2 gave thio-bridged complex anions [(Mo(CN)6)2(mu-S)]6- and [(Mo(CN)4(mu-S))2]6-. Under prebiotic conditions such complexes could have been formed similarly from molybdenite and may have been precursors of molybdoenzymes. (2) Only those compounds which contained terminal sulphur bound to molybdenum (i.e., Mo = S groups), viz. oxothiomolybdates and the complex [(Mo(mu-S)(S)(Et2NCS2))2], reacted with cyanide; thiocyanate was formed and the molybdenum underwent two-electron reduction. That the cyanolysable sulphur of xanthine oxidase reacts in the same way with cyanide suggests the presence of a Mo = S group which could be a structural feature of the enzyme or could have been formed by initial cyanolysis of a bound persulphide or cysteine residue.  相似文献   

7.
Stopped-flow kinetic studies of the formation of ferrioxamine B were performed. Formation of the complex follows the rate law
where Ka is the acid dissociation constant of the iron(III) aquo species in 0.1 M formate buffer. At 25°C k1 = 3.94 × 102M?1 sec?1, k2Ka = 1.18 × 10?1 sec?1, k3 = 3.6 × 10?1 sec?1. Activation parameters for k1 are ΔH = 11.7 kcal mole?1 and ΔS = ?8 cal K?1 mole?1. An associative mechanism is proposed. Attachment of the first chelate ring is the slow step and favorably positions the second chelate ring for attachment. Coordination of two chelate rings favorably positions the third chelate ring for attachment. These results are compared to kinetics of formation of model complexes and to a previous study of the formation of ferrioxamine B in which attachment of the third chelate ring was proposed as the slow step  相似文献   

8.
The ferric hemes of valence hybrid hemoglobins combine with imidazole in a manner analogous with the hemes of methemoglobin. Equilibrium studies show that imidazole binding to methemoglobin is minimally described by the sum of two independent processes (K1 = 200 M?1 and K2 = 37 M?1), both of which contribute equally to the observed difference spectrum. Using valance hybrid hemoglobins, which show single binding processes under similar conditions, it is possible to identify the high affinity sites in methemoglobin with the α chains and the low affinity sites with the β chains.Kinetic studies show that the valance hybrid hemoglobins react in a single exponential fashion with imidazole in contrast with methemoglobin which shows a biphasic reaction (k1 = 85 M?1 sec?1k2 = 25 M?1 sec?1). A comparison of the rates of reaction of the hybrids allows the assignment of the fast phase in methemoglobin to the β chains and the slow phase to the α chains.The heterogeneity of the imidazole reaction with methemoglobin occurs over the pH range 5.5–9.5 within which two ionization processes are discernable at pH 6.9 and 7.5.  相似文献   

9.
The pfc response of Srbc primed IgM memory cells has been characterized by limiting dilution analysis in vitro, in which LPS was used to maximize the response of spleen cells to Srbc. The analysis suggested that, even under these conditions, expression of B cell memory was not directly assayed and cell collaboration effects were still basic to the system.Two types of cells, as defined by function, appeared necessary to elicit optimal clonal proliferation of IgM B memory cells: firstly, helper T cells were essential for B cell proliferation even with LPS present in culture. Under appropriate conditions, helper activity could be provided by normal thymus cells. Secondly, activated T cells were required for the maximal conversion of normal thymus cells to helper cells. A third activity, T cell-dependent suppression, was observed at high cell doses. The implications of these results and the need for a comprehensive analysis of in vitro conditions for each individual type of experiment is discussed.  相似文献   

10.
The effects of adding lysine, arginine and ammonia to gluten on the self-selection of protein and energy by the weanling rat simultaneously offered a choice of two diets differing only in gluten concentration (15 and 55%) were tested. Previous studies have shown that while lysine (6 g/100 g) additions to gluten decreased the amount of gluten selected by the rat from 40 to 20 g per 100 g of food eaten, selection was not related to the nutritional quality of the gluten. When graded levels of arginine (1.8, 3.6 or 7.2 g/100 g) were added to the gluten with or without lysine (0 or 6 g/100 g) the dietary protein selection was unaffected. The addition of ammonia (1.4 g/100 g as NH4Cl) to gluten had initially the same effect as lysine (6 g/100 g) but with time protein intake returned to control levels. This effect of ammonia was unaltered by arginine additions. It is concluded that the mechanisms which lead to decreases in gluten selection caused by lysine or ammonia are not similar, and that the effects of lysine on gluten selection are not caused by an increased arginine requirement for urea cycle activity.  相似文献   

11.
The iron(III) complex of deuteroporphyrin(IX), deuteroferriheme, catalyzes the chlorination, by sodium chlorite, of the active methylene compound monochlorodimedone (MCD) to dichlorodimedone. Rate studies, carried out on a stopped-flow spectrophotometric time scale, show the chlorination to be zero-order in MCD, first-order in ClO2- and to display a complex dependence on heme. The active chlorinating agent is believed to be hypochlorite, OCl-, formed as a result of the initial two-electron oxidation of heme to peroxidatic intermediate by chlorite ion. This scheme is supported by the fact that the normal (4:1) heme:ClO2- molar stoichiometry is reduced in the presence of MCD to values approaching 2:1. This suggests that MCD is an effective scavenger of OCl-, which, in the absence of active methylene compound, serves as a two-electron oxidant of heme. The zero-order dependence of rate on MCD is attributed to the slow formation of OCl-, consequent to a mechanism in which the rate-limiting step is viewed to be the regeneration of free heme from peroxidatic intermediate, probably via a catalatic pathway. Support for such a mechanism is provided by the fact that addition of ascorbate greatly enhances the rate of MCD chlorination, presumably by accelerating the rate of heme regeneration via perioxidation reduction of the heme intermediate.  相似文献   

12.
Spontaneous and chemically-induced reactivation of organophosphate-inhibited cholinesterase were studied using as an enzyme source plasma obtained from non-pregnant females, pregnant females at term and their respective neonates, sampled immediately following delivery. Aliquots of plasma were incubated with dichlorvos (10?6M) for 5 min at 37°C resulting in a 96 percent inhibition of cholinesterase activity in all three groups at which time either pralidoxime chloride (10?3M) or an equivalent volume of saline was added to the reaction flask and the restoration of cholinesterase activity was monitored over the next 120 min. Pralidoxime-mediated cholinesterase reactivation in ‘non-pregnancy’ plasma was significantly greater than that observed in either ‘maternal’ or ‘fetal’ plasma, however, no significant difference was noted in reactivation rates for these latter two groups. Significant differences were also observed in the rates of spontaneous reactivation, however, after correcting for this, there were still significant differences in the rates of pralidoxime-mediated reactivation (non-pregnant > pregnant ≥ fetal).  相似文献   

13.
Thymidylate synthase from methotrexate-resistant Lactobacillus casei was rapidly and completely inactivated by low concentrations of permanganate, periodate, or potassium triiodide at 0 degree C. The enzyme was not inactivated to any appreciable extent by iodate, iodide, ferricyanate, iodosobenzoate, or hydrogen peroxide. The inactivation by permanganate was retarded by the substrate 2'-deoxyuridylate and, to a lesser extent, by phosphate. Titration of enzyme activity with permanganate showed that two moles of permanganate were required to completely inactivate one mole of thymidylate synthase.  相似文献   

14.
Fast reaction kinetic experiments on the electron transfer reaction between azurin and cytochrome c551 isolated from Pseudomonas aeruginosa confirmed the existence of two redox forms of reduced azurin previously reported. The pH dependence of the amplitudes of the relaxation processes observed in temperature jump experiments indicate that these two redox forms are in pH dependent equilibrium. The pH independence of the overall equilibrium constant indicates that redox active and inactive forms of cytochrome c551 may also exist. Evidence that reduced cytochrome c551 undergoes a pH transition is given by optical spectrophotometry. The nature of the transition is discussed in the context of recent nmr studies and in terms of the Marcus theory of electron transfer. The metabolic consequences of these transitions are also discussed.  相似文献   

15.
The reduction of cytochrome c by a series of ferrous EDTA-like complexes was analyzed by the relative Marcus and Tunneling theories. All of the rate constants were calculated at infinite ionic strengths by the use of the Wherland-Gray equation to eliminate electrostatic effects. Both of the theories predicted the rate constants quite well for most of the complexes. But, for those complexes that cannot completely fill all the coordination sites of the iron (HEDTA, NTA), the rate constants were anomalously low. This would be consistent with an increased tunneling distance due to an increase in the size of the complex due to hydrogen bonding between the coordinated hydroxide and the solvent, or due to poorer interaction between the protein and the more hydrophobic mediators.  相似文献   

16.
Using visible absorption, CD, 1H nmr, and epr spectroscopy, the Cu(II) binging properties of daunomycin, adriamycin, and N-trifluoroacetyl daunomycin in water and ethanol have been explored. The drugs form two water soluble complexes having Cu-drug stoichiometries of 1:1 and 1:2, and with apparent pKas of formation of 5.6 and 6.5, respectively. At pH values above ~8, the drugs form insoluble polymeric complexes with Cu(II). Similar species are also observed in ethanol. The structure of the compounds have been interpreted in terms of binding of the deprotonated hydroxyquinone portion of the drug to the copper ion. No evidence for the binding of the amino group on daunosamine was found.  相似文献   

17.
Methylmercury(II) and mercury(II) complexes of imidazole (1), 1-methylimidazole (2), and the 1,3-dimethylimidazolium ion (3) have been prepared in aqueous or ethanolic solution. Elemental analysis and 1H nmr spectroscopy have been used to characterize the complexes. The MeHg (Me = methyl) binding sites have been identified as N1, N3 (1), N3, C2 (2), and C2 (3). Reaction with HgO leads to the formation of Hg-bridged complexes of the type Im-Hg-Im, (Im = imidazole), where bonding occurs through N1 (1) and C2 (3); the latter is also formed as a result of symmetrization of the C2-bound MeHg complex. The formation of the C2-bound (carbene) complexes is discussed in terms of the increased acidity of the C2 proton resulting from coordination of an electrophilic species at N3. Based on electrostatic considerations, there appears to be a “minimum degree of activation” required before C2 bonding can occur, which explains the lack of this coordination mode in 1. 199Hg-1H spin-spin coupling (4J) is observed for C-bound mercury, but not for N-bound mercury, which is interpreted in terms of a decreased ligand exchange rate in the former case, due to the greater stability of the Hg-C bond. 2J coupling constants measured in (CD3)2SO for a number of MeHg complexes of heterocyclic ligands (including the imidazoles of the present study) correlate well with the ligand pKa (25°C, aqueous solution), according to 2J = ?3.88 pKa + 248.5. Results in the present work are discussed in relation to our previous work with nucleosides. The significance of the results to biological systems is considered.  相似文献   

18.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

19.
20.
Carbon-13 spin-lattice relaxation times, T1, have been measured for aqueous solutions of L-aspartic acid, L-alanine, O-phospho-L-serine, and 2-mercapto-L-succinic acid in the presence of the paramagnetic metal ions, Cu2+ and Mn2+, and Mg2+ as a diamagnetic control, at ambient temperature and neutral pH. Nitrogen-15, oxygen-17 and proton relaxation times were also obtained for L-aspartic acid and phosphorus-31 relaxation times for O-phospho-L-serine under similar conditions. The structures of these complexes in solution were determined from the various metal ion-nuclei distances calculated from the paramagaetically-induced relaxation. These results indicate that the Cu2+ interaction with L-aspartic acid is through α-amino and β-carboxyl groups while Mn2+ coordinates most strongly through α-and β-carboxyl groups, with the possibility of a weak interaction through the amino group.An examination of the coordination of these divalent metal ions to an analog of L-aspartic acid in which the β-carboxyl group is replaced by a phosphate group (O-phospho-L-serine) indicated that Cu2+ coordination is now probably through the α-amino and phosphate groups, while this analog is a monodentate ligand for Mn2+ coordinating through the phosphate group. Removal of the β-carboxyl group (L-alanine) also results in Cu2+ coordination through the α-carboxyl and α-amino groups, and the same ligand interactions are observed with Mn2+. Replacement of the α-amino group of L-aspartic acid with an - SH group (2-mercapto-L-succinate) is sufficient to eliminate any specific coordination with either Cu2+ or Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号