首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Inorganica chimica acta》1986,119(2):203-205
Reactions of cis-diaminediaqua palladium and platinum dinitrates and of trans-diaminediaqua platinum dinitrate give complexes of the type Pd(tmeda)(OH)(C4O4)Pd(tmeda)(C4O4H) (tmeda = tetramethylethylenediamine) (1), (en)M(C4O4)2M(en) (en = ethylenediamine (M = Pd, Pt) and trans-[Pt- (NH3)2C4O4]n, respectively. The structures of these compounds are discussed on the basis of their spectroscopic data.  相似文献   

2.
The first [Pd(Ln)2(ox)] xH2O oxalato(ox) complexes involving 2-chloro-N6-(benzyl)-9-isopropyladenine (L1; complex 1), 2-chloro-N6-(4-methoxybenzyl)-9-isopropyladenine (L2; 2), 2-chloro-N6-(2,3-dimethoxybenzyl)-9-isopropyladenine (L3; 3), 2-chloro-N6-(2,4-dimethoxybenzyl)-9-isopropyladenine (L4; 4), and 2-chloro-N6-(4-methylbenzyl)-9-isopropyladenine (L5; 5) have been synthesized by the reactions of potassium bis(oxalato)palladate(II) dihydrate, [K2Pd(ox)2]·2H2O, with the mentioned organic compounds (H2ox = oxalic acid; x = 0 for 1-3 and 5 or 2 for 4). Elemental analyses (C, H, N), FTIR, Raman and NMR (1H, 13C, 15N) spectroscopies, conductivity measurements and thermal studies (thermogravimetric and differential thermal analyses, TG/DTA) have been used to characterize the prepared complexes. The molecular structures of [Pd(L2)2(ox)] (2) and [Pd(L5)2(ox)]·L5·Me2CO (5·L5·Me2CO) have been determined by a single crystal X-ray analysis. The geometry of these complexes is slightly distorted square-planar with two appropriate Ln (n = 2 or 5) molecules mutually arranged in the head-to-head (2) or head-to-tail (5) orientation. The Ln ligands are coordinated to the central Pd(II) ion via the N7 atoms. The same conclusions regarding the binding properties of L1-L5 ligands can be made based on multinuclear NMR spectra. In vitro cytotoxicity of the complexes 1-5 has been evaluated against human chronic myelogenous leukaemia (K562) and human breast adenocarcinoma (MCF7) cancer cell lines. Significant cytotoxicity has been determined for the complexes 3 (IC50 = 6.2 μM) and 5 (IC50 = 6.8 μM) on the MCF7 cell line, which is even better than that found for the well-known and widely-used platinum-bearing antineoplastic drugs, i.e. oxaliplatin and cisplatin.  相似文献   

3.
Reactions of potassium bis(oxalato)palladate dihydrate, K2[Pd(ox)2]·2H2O, with two molar equivalents of N6-(benzyl)-9-isopropyladenine-based organic molecules (L1-7), i.e. 2-chloro-N6-(2-methoxybenzyl)-9-isopropyladenine (L1), 2-chloro-N6-(3-methoxybenzyl)-9-isopropyladenine (L2), 2-chloro-N6-(3,5-dimethoxybenzyl)-9-isopropyladenine (L3), 2-(1-ethyl-2-hydroxyethylamino)-N6-(benzyl)-9-isopropyladenine (L4), 2-(1-ethyl-2-hydroxyethylamino)-N6-(2-methoxybenzyl)-9-isopropyladenine (L5), 2-(1-ethyl-2-hydroxyethylamino)-N6-(3-methoxybenzyl)-9-isopropyladenine (L6) and 2-(1-ethyl-2-hydroxyethylamino)-N6-(4-methoxybenzyl)-9-isopropyladenine (L7), provided a series of seven palladium(II) oxalato (ox) complexes of the general formula [Pd(ox)(L1-7)2nH2O (1-7; n = 0 for 4, 5 and 7, ¾ for 1 and 2, 1 for 6, and 3 for 3). The compounds were characterized by elemental analysis, IR, Raman, 1H, 13C and 15N{1H} NMR spectroscopy, ESI+ mass spectrometry, molar conductivity and TG/DTA thermal analysis. The geometry of [Pd(ox)(L2)2] (2) was optimized on the B3LYP/6-311G∗/LANL2DZ level of theory. The complexes 4-7 represent the first palladium(II) oxalato complexes with a PdN2O2 donor set, which involve highly potent purine-based cyclin-dependent kinase (CDK) inhibitors (L4-7) as carrier N-donor ligands. The selected complexes 1, 3-5 and 7 were tested by an MTT assay for their in vitro cytotoxic activity against human osteosarcoma (HOS) cancer cell line. The highest activity was found for the complexes 5 (IC50 = 34.9 μM) and 7 (IC50 = 39.2 μM).  相似文献   

4.
[Pt(L)2(ox)] (1), [Pt(2-OMeL)2(ox)] (2), [Pt(3-OMeL)2(ox)] (3), [Pt(2,3-diOMeL)2(ox)] (4), [Pt(2,4-diOMeL)2(ox)] (5), [Pt(3,4-diOMeL)2(ox)] (6) and [Pt(3,5-diOMeL)2(ox)]·4H2O (7) platinum(II) oxalato (ox) complexes were synthesized using the reaction of potassium bis(oxalato)platinate(II) dihydrate with 2-chloro-N6-(benzyl)-9-isopropyladenine or its benzyl-substituted analogues (nL). The complexes 1-7, which represent the first platinum(II) oxalato complexes involving adenine-based ligands, were fully characterized by various physical methods including multinuclear and two dimensional NMR spectroscopy. A single-crystal X-ray analysis of [Pt(2,4-diOMeL)2(ox)]·2DMF (5·2DMF; DMF = N,N′-dimethylformamide), proved the slightly distorted square-planar geometry in the vicinity of the Pt(II) ion with one bidentate-coordinated oxalate dianion and two adenine derivatives (nL) coordinated to the Pt(II) centre through the N7 atom of an adenine moiety, thereby giving a PtN2O2 donor set. In vitro cytotoxicity of the prepared complexes was tested by an MTT assay against osteosarcoma (HOS) and breast adenocarcinoma (MCF7) human cancer cell lines. The best results were achieved for the complexes 2 and 5 in the case of both cell lines, whose IC50 values equalled 3.6 ± 1.0, and 4.3 ± 2.1 μM (for 2), and 5.4 ± 3.8, and 3.6 ± 2.1 μM (for 5), respectively. The IC50 equals 9.2 ± 1.5 μM against MCF7 cells in the case of 1. The in vitro cytotoxicity of the mentioned complexes significantly exceeded commercially used platinum-based anticancer drugs cisplatin (34.2 ± 6.4 μM and 19.6 ± 4.3 μM) and oxaliplatin (> 50.0 μM for both cancer cell lines).  相似文献   

5.
Two series of methylpalladium(II) compounds with mono and bidentate nitrogen-donor ligands, namely [Pd(N-N)2(CH3)][X] (N-N=phen (1a), dm-phen (1b) (dm-phen=4,7-dimethyl-1,10-phenanthroline), tm-phen 1c (tm-phen=3,4,7,8-tetramethyl-1,10-phenanthroline); X=OTf, PF6 −) and [Pd(N-N)(L)(CH3)][OTf] (N-N=phen and L=py (1ad) (py=pyridine), N-N=phen and L=2-Ph-py (1ae) (2-Ph-py=2-phenyl-pyridine), N-N=phen and L=BzQ (1af) (BzQ=7,8-benzoquinoline), N-N=tm-phen and L=BzQ (1cf)), have been synthesised and fully characterised both in solid state and in solution. The crystal structures of [Pd(phen)2(CH3)][PF6] and [Pd(phen)(2-Ph-py)(CH3)][OTf] show a square planar coordination geometry for palladium with the monodentate ligand (one phen molecule plays this role in 1a) bound to the metal with its plane almost perpendicular to the coordination plane. In both structures the PdN bond length trans to the methyl is remarkably affected by its trans influence. The behaviour in solution is characterised for the first series of compounds by a dynamic process which makes the two N-N ligands equivalent, as corroborated by the 15N NMR analysis: only one averaged signal is shown for all of the four nitrogen atoms. No fluxional process is present for the compounds of the second series, and three main crosspeaks are shown in the 15N-1H HMQC spectra. In particular, the signal of the 15N trans to the methyl group has a typical chemical shift, which differs from those of two 15N trans to each other. Both series of complexes are reacted with carbon monoxide and the reaction products are studied by 1H NMR spectroscopy and, when possible, by isolating the acyl derivatives. The products of this reaction are affected by the nature of the second molecule of N-ligand.  相似文献   

6.
New palladium(II) complexes containing the water soluble aminophosphine PTN ligand (PTN = 7-phospha-3,7-dimethyl-1,3,5-triazabicyclo[3.3.1]nonane) in 1:1 and 1:2 ratio Pd/PTN ligand, respectively, were prepared and fully characterised by mono and bidimensional 31P, 1H and 13C NMR techniques showing that PTN can adopt both κ1-P and κ2-P,N coordination modes. The complexes with Pd/PTN ratio 1:2 are highly soluble in water at room temperature. Suitable crystals for X-ray structure determination were obtained for the neutral complex κ2-P,N-Pd(PTN)(OAc)2 (1) and for the monocationic complex [Pd(κ2-P,N-PTN)(κ1-P-PTN)Cl][PF6] (5).  相似文献   

7.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

8.
9.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

10.
《Inorganica chimica acta》1986,122(2):129-133
Complexes of the type [Ni(β-diketonate)(L L)1,2] (LL = diphosphine, (2), en or dipy, (3)) have been synthesized from [Ni(β-diketonate)2] (1) and the free ligand under stoichiometric conditions in ethanol. Complexes 2 are square-planar species, while compounds 3 are hexacoordinate complexes, all being quite stable toward ligand disproportionation. The ligand-set {P2O2-} appears to be particularly stable in the nickel(II) coordination sphere and turns out to exert a fairly strong average ligand field.  相似文献   

11.
The reaction of [Ni(eftp)] [eftp = N,N-ethylene(6-formyl-4-methyliminatothiophenolato)] with hydroxylamine hydrochloride in the presence of potassium acetate in MeOH resulted in the formation of [Ni(L)2], L = 2-mercapto-5-methyl-3-({2-[(5-methyl-benzo[d]isothiazol-7-ylmethylene)-amino]-ethylimino}-methyl)-benzonitrile. A single-crystal X-ray diffraction structural determination showed that the oxime groups of the proposed new binucleating ligand had reacted to produce a nitrile and an isothiazole ring, while two ligand molecules combined with one Ni(II) ion to form a new complex with a cis-S2N2 square-planar geometry. Also, the reaction of 2,6-diformyl-4-methylphenyl disulfide with hydroxylamine in MeCN resulted in the synthesis of 5-methyl-2-oxy-benzo[d]isothiazole-7-carbaldehyde oxime, where an isothiazole ring had formed via the cleavage of the disulfide bond. Again, a single-crystal X-ray diffraction study confirmed the presence of a benzisothiazole product.  相似文献   

12.
The syntheses of five new complexes of the 2-formylpyridinethiosemicarbazone ligand (HFpyTSC) with Pd(II) and Rh(III) ions are described, viz., [Pd(FpyTSC)(PPh3)]PF6, [Pd(FpyTSC)(SCN)], [Pd(FpyTSC)Br], [Pd(HFpyTSC)2]Br2 and [Rh(FpyTSC)(PPh3)2Cl]ClO4. The formulation of the complexes is discussed in terms of their elemental analyses and IR, Raman, NMR (1H, 13C and 31P), mass and electronic spectra. The X-ray crystal structures of [Pd(FpyTSC)(PPh3)]PF6 and [Pd(FpyTSC)(SCN)] show that the HFpyTSC ligand coordinates to the central Pd(II) ion in a planar conformation through the pyridyl nitrogen, the azomethine nitrogen and the deprotonated thiol sulphur atom. Thus, HFpyTSC is a versatile ligand that usually acts as a mononegative tridentate ligand bonding through Npy, NCN and C-S while, in the case of [Pd(HFpyTSC)2]Br2, it behaves as a neutral bidentate ligand via NCN and CS.  相似文献   

13.
Palladium(II) complexes with triphenylphosphine (PPh3) and thioamides of the general formulae, [Pd(L)2(PPh3)2]Cl2 and [Pd(L)2(PPh3)2] have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 31P) methods, and two of them (trans-[Pd(PPh3)2(Dmtu)2]Cl2·(H2O)(CH3OH)0.5 (1) and trans-[Pd(PPh3)2(Mpy)2] (2)) by X-ray crystallography; where L = thiourea (Tu), methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), 2-mercaptopyridine (Mpy), 2-mercaptopyrimidine (Mpm) and thionicotinamide (Tna). The spectral data of the complexes are consistent with the sulfur coordination of thioamides to palladium(II). The crystal structures of the complexes show that (1) has ionic character consisting of [Pd(PPh3)2(Dmtu)2]+2 cations and uncoordinated Cl ions, while (2) is a neutral complex with Mpy behaving as anionic thiolate ligand. The coordination environment around palladium in (2) is nearly regular square-planar, while in (1) the trans angles show significant distortions from 180°. The complexes were screened for antibacterial effects, brine shrimps lethality bioassay and antitumor activity. These complexes showed significant activities in most of the cases against the tested bacteria as compared to that of a standard drug. Their antitumor activity against prostate cancer cells (PC3) is comparable with doxorubicin, together with no cytotoxic effects in brine shrimps lethality bioassay study.  相似文献   

14.
The reaction of purine nucleobases (adenine, 3-methyladenine and 9-methylguanine) with a metallic salt in the presence of potassium oxalate yields three compounds with formulae {[Cd(μ-ox)(H2O)(Hade)]·H2O}n (1), {[Cu(μ-ox)(H2O)(3Meade)]·H2O}n (2) and [Cu(ox)(H2O)2(9Megua)]·2.5H2O (3). Crystal structures of compounds 1-2 consist of 1D zig-zag chains in which cis-[M(H2O)(nucleobase)]2+ fragments are linked by bis-bidentate oxalato ligands. In compound 1, the nucleobase is coordinated through the minor groove N3 atom, and the resulting non-canonical 7H-adenine tautomer is stabilized by non-covalent interactions involving more basic N9 and N7 sites. In compound 2, the mutagenic 3-methyladenine is attached to the metal atoms by means of the imidazole N7 atom. The dissimilar binding pattern of the nucleobases produces significant differences in the supramolecular architectures of compounds 1 and 2 which are essentially governed by an extensive network of non-covalent interactions such as hydrogen bonded adenine-adenine base pairs, hydration of the nucleobases, carboxylato-nucleobase associations, and face-to-face π-π stacking. The model 9-methylguanine nucleobase of compound 3 exhibits its usual coordination mode through the major groove N7 atom to form two monomeric [(Cu(ox)(H2O)2(9Megua)] units which are held together by means of Watson-Crick like hydrogen bonds between the guanine moieties and the inorganic frameworks generating almost planar tetrameric metal-organic aggregates. The 3D packing of the complex entities affords an open structure containing voids which are filled by decameric (H2O)10 clusters. Variable-temperature magnetic susceptibility measurements of compound 2 show the occurrence of antiferromagnetic intrachain interactions in good agreement with the structural features of its 1D metal-oxalato framework.  相似文献   

15.
The 1D triclinic {CuHg(en)(μ-NCS-N,S)4}n (1) and 2D monoclinic {CuHg(en)(μ-NCS-N,S)3(SCN)}n (2) (en = ethylenediamine) heterometallic coordination polymers, as the two polymorphs of the {CuHg(en)(NCS)4}n, were synthesized at room temperature by the reaction of mercuric thiocyanate, potassium thiocyanate, copper(II) malonate and ethylenediamine using different reagent ratios. XRD on single crystals shows that the compound 1 consists of 1D ladder like zigzag ribbons extended along the b axis, whereas compound 2 shows a 2D wavy polymeric structure running parallel to the ab plane. In the crystal packing of the both polymorphs, the polymeric structures are further interlinked to each other via weak interactions and hydrogen bonding to afford a 3D network. Diagnostic ligand and metal-ligand bands in the IR, far-IR and Raman spectra are assigned for the studied compounds. While compound 1 shows no significant emission upon excitation at any wavelength in the UV-Vis region, compound 2 exhibits intense emission at around 410 nm. Moreover, the room temperature X-band EPR spectrum of a powdered sample of 1, shows a signal of rhombic symmetry with g1 = 2.2637, g2 = 2.0765 and g3 = 2.0483. In contrast to this, 2 reveals an axial signal with g = 2.0742; however, the g|| is unresolved.  相似文献   

16.
The preparation and molecular and crystal structure of the complex [(ethylenediamine)bis(7,9,-dimethylhypoxanthine)platinum(II)] hexafluorophosphate, [Pt(C2H8N2)(C7H8N4O)2] (PF6)2, are reported. The complex crystallizes in the monoclinic system, space group C2/c, with a = 12.334(2)Å, b = 10.256(2)Å, c = 22.339(3)Å, β = 101.31(1)°, V = 2771.0Å3, Z = 4, Dmeasd = 2.087(3) g cm?3, Dcalc = 2.094 g cm?3. Intensities for 3992 symmetry-averaged reflections were collected in the θ-2o scan mode on an automated diffractometer employing graphite-monochromatized MoKα radiation. The structure was solved by standard heavy-atom Patterson and Fourier methods. Full matrix least-squares refinement led to a final R value of 0.051. Both the ethylenediamine chelate and the PF6? anion are disordered. The primary coordination sphere about the Pt(II) center is approximately square planar with the bidentate ethylenediamine ligand and the N(1) atoms [Pt(II) ? N(1) = 2.020(5)Å] of two 7,9-dimethylhypoxanthine bases (related by a crystallographic twofold axis of symmetry) occupying the four coordination sites. The exocyclic O(6) carbonyl oxygen atoms of the two 7,9-dimethylhypoxanthine ligands participate in intracomplex hydrogen bonding with the amino groups of the ethylenediamine chelate [N(ethylenediamine) ? O(6) = 2.89( )Å]. The observed Pt ? O(6) intramolecular distances of 3.074(6)Å are similar to those found in other Pt(II) N(1)-bound 6-oxopurine complexes and in several Pt(II) N(3)-bound cytosine systems.  相似文献   

17.
 Dipeptides and tripeptides AcMet-aaH containing N-acetyl methionine, in which the group aaH is GlyH, AlaH, ValH, or Gly-GlyH, undergo hydrolytic cleavage of the Met-aaH peptide bond in the presence of the following complexes of palladium(II): cis-[Pd(en)(H2O)2]2+, cis-[Pd(tn)(H2O)2]2+, cis-[Pd(en)(CH3OH)2]2+, cis-[Pd(S,N-MetH)(H2O)2]2+, cis-[Pd(S,N-Met-GlyH)(H2O)2]2+, and cis-[Pd(S,N-Met-AlaH)(H2O)2]2+. These mononuclear complexes are precursors of binuclear palladium(II) complexes containing the substrates AcMet-aaH as bridging thioether ligands. The rate constant for cleavage is higher when the bidentate ligand in the precursor complex is ethylenediamine (which is completely displaced) than S,N-methionine (of which only the amino group is displaced), because the number of aqua ligands available for cleavage is greater in the former than in the latter case. The demonstrated dependence of the rate constant on the steric bulk (volume) of the leaving group, aaH, points the way toward achieving a degree of sequence selectivity in cleavage of peptide bonds by palladium(II) aqua complexes. One equivalent of cis-[Pd(en)(H2O)2]2+ cleaves as many as ten equivalents of AcMet-GlyH, but the rate constant decreases as the molar excess of the dipeptide over the catalyst increases. This demonstration of catalytic turnover points the way to our ultimate goal – artificial metallopeptidases. Received: 13 June 1997 / Accepted: 24 September 1997  相似文献   

18.
Reactions of silver(I) nitrate with equimolar amounts of the diphos ligands 1,4-bis(diphenylphosphino)butane (dppb) or 1,2-bis(diphenylphosphino)ethane (dppe) and some heterocyclic thiones (L) in acetonitrile/methanol solvent afforded mixed-ligand complexes, the nature of which was found to be strongly influenced by the backbone length of the diphosphine ligand. The longer chained diphos ligand formed a series of dinuclear complexes of the type [Ag(dppb)(L)]2(NO3)2 with both the diphosphine and thione ligands acting as bridging ligands between the two four-coordinate pseudo-tetrahedrally coordinated metal centers. In the unique case of L=4-methyl-5-trifluoromethyl-4H-1,2,4-triazoline-3(2H)-thione (mftztH), the reaction proceeded under exclusion of the thione ligand from the coordination sphere and coordination of the nitrate anions instead, leading to the diphosphine-doubly bridged dimeric compound [Ag(dppb)(NO3)]2. On the other hand, the complexes produced when using the short bite 1,2-bis(diphenylphosphino)ethane (dppe) turned out to be diphosphine-bridged cationic polymers of the type [Ag(dppe)(L)2]n(NO3)n. The structures of one representative for each of the two aforementioned series of complex compounds, namely [Ag(dppb)(py2SH)]2(NO3)2 · 2H2O and [Ag(dppe)(pymtH)2]n(NO3)n, have been established by single-crystal X-ray diffraction.  相似文献   

19.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

20.
Four new palladium(II) complexes with the formula Pd(L)2, where L are quinoxaline-2-carbonitrile N1,N4-dioxide derivatives, were synthesized as a contribution to the chemistry and pharmacology of metal compounds with this class of pharmacologically interesting bioreductive prodrugs. Compounds were characterized by elemental, conductometric and thermogravimetric analyses, fast atom bombardment mass spectrometry (FAB-MS) and electronic, Fourier transform infrared (FTIR) and 1H-nuclear magnetic resonance spectroscopies. The complexes were subjected to cytotoxic evaluation on V79 cells in hypoxic and aerobic conditions. In addition, a preliminary study on interaction with plasmid DNA in normoxia was performed. Complexes showed different in vitro biological behavior depending on the nature of the substituent on the quinoxaline ring. Pd(L1)2 and Pd(L2)2, where L1 is 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide and L2 is 3-amino-6(7)-methylquinoxaline-2-carbonitrile N1,N4-dioxide, showed non selective cytotoxicity, being cytotoxic either in hypoxic or in aerobic conditions. On the other hand, Pd(L3)2, where L3 is 3-amino-6(7)-chloroquinoxaline-2-carbonitrile N1,N4-dioxide, resulted in vitro more potent cytotoxin in hypoxia (P = 5.0 μM) than the corresponding free ligand (P = 9.0 μM) and tirapazamine (P = 30.0 μM), the first bioreductive cytotoxic drug introduced into clinical trials. In addition, it showed a very good selective cytotoxicity in hypoxic conditions, being non-cytotoxic in normoxia. Its hypoxic cytotoxicity relationship value, HCR, was of the same order than those of other hypoxia selective cytotoxins (i.e., Mitomycine C, Misonidazole and the N-oxide RB90740). Interaction of the complexes with plasmid DNA in normoxia showed dose dependent ability to relax the negative supercoiled forms via different mechanisms. Pd(L2)2 introduced a scission event in supercoiled DNA yielding the circular relaxed form. Meanwhile, both Pd(L1)2 and Pd(L3)2 produced the loss of negative supercoils rendering a family of topoisomers with reduced electrophoretic mobility. Pd(L3)2 showed a more marked effect than Pd(L1)2. Indeed, for the highest doses assayed, Pd(L3)2 was even able to introduce positive supercoils on the plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号