首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
For a detailed study of chromosome morphology in meiotic prophase stages of Beta species, a special double staining technic has been developed. It consists of combined maceration-staining in an ethanol-hydrochloric acid-carmine mixture followed by poststaining of the squashed material in a diluted Giemsa solution. The technic yields well-spread prophase meiotic nuclei showing detailed structures both in weaker stained chromosome segments and in threadlike chromatin structures. This technic proved to be especially favorable for stages which are difficult to interpret, such as pachytene, schizotene and diffuse stages.  相似文献   

2.
M. Molnar  J. Bahler  M. Sipiczki    J. Kohli 《Genetics》1995,141(1):61-73
The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.  相似文献   

3.
Strokov AA 《Genetika》2007,43(11):1468-1477
The qualitative and quantitative changes in molecular chromatin structures during the meiotic prophase I were studied. The following patterns were discovered: (1) unlike somatic cells, the syntheses of total histone and DNA and its integration into the chromatin occur independently and asynchronously: DNA replication is completed by the interphase, whereas the synthesis of histone and its integration into the chromatin continue to late meiotic prophase I, and (2) individual histone fractions are synthesized and integrated into the chromatin during meiotic prophase independently and asynchronously. Chromatin hydrolysis with nucleases DNI, STN, and SI demonstrated considerable differences in the hydrolysis products obtained at different stages of the meiotic prophase I; presumably, this reflects the differences between the structures of initial chromatin at different stages of the meiotic prophase I.  相似文献   

4.
The qualitative and quantitative changes in molecular chromatin structures during the meiotic prophase I were studied. The following patterns were discovered: (1) unlike somatic cells, the syntheses of total histone and DNA and its integration into the chromatin occur independently and asynchronously: DNA replication is completed by the interphase, whereas the synthesis of histone and its integration into the chromatin continue to late meiotic prophase I, and (2) individual histone fractions are synthesized and integrated into the chromatin during meiotic prophase independently and asynchronously. Chromatin hydrolysis with nucleases DNI, STN, and SI demonstrated considerable differences in the hydrolysis products obtained at different stages of the meiotic prophase I; presumably, this reflects the differences between the structures of initial chromatin at different stages of the meiotic prophase I.  相似文献   

5.
Henderson  S. A. 《Chromosoma》1971,35(1):28-40
It is suggested that not one, but four different grades of lampbrush chromosome organisation characterise different stages of mitosis and meiosis: (a) where a single chromatid organises symmetrically disposed lateral loops (second meiotic prophase), (b) where the two sister chromatids of a visibly single chromosome organise lateral loops in a laterally asymmetrical fashion, both sets of loops projecting from the same side and away from the face used, in meiosis, for pairing (early first meiotic prophase), (c) where the lateral loops organised by two visibly separate sister chromatids are symmetrically disposed on either side of the chromosome and project away from each other (mitotic prophase and late first meiotic prophase), (d) where the organisation is as in (c) but chromatid axes are intimately fused and form a visibly single strand (female amphibian diffuse diplotene).  相似文献   

6.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

7.
Genetic modifications causing germ cell death during meiotic prophase in the mouse frequently have sexually dimorphic phenotypes where oocytes reach more advanced stages than spermatocytes. To determine to what extent these dimorphisms are due to differences in male versus female meiotic prophase development, we compared meiotic chromosome events in the two sexes in both wild-type and mutant mice. We report the abundance and time course of appearance of structural and recombination-related proteins of fetal oocyte nuclei. Oocytes at successive days post coitus show rapid, synchronous meiotic prophase development compared with the continuous spermatocyte development in adult testis. Consequently, a genetic defect requiring 2–3 days from the onset of prophase to reach arrest registers pachytene as the developmental endpoint in oocytes. Pachytene spermatocytes, on the other hand, which normally accumulate during days 4–10 after the onset of prophase, will be rare, giving the appearance of an earlier endpoint than in oocytes. We conclude that these different logistics create apparent sexually dimorphic endpoints. For more pronounced sexual dimorphisms, we examined meiotic prophase of mice with genetic modifications of meiotic chromosome core components that cause male but not female sterility. The correlations between male sterility and alterations in the organization of the sex chromosome cores and X–Y chromatin may indicate that impaired signals from the XY domain (XY chromosome cores, chromatin, dense body and sex body) may interfere with the progression of the spermatocyte through prophase. Oocytes, in the absence of the X–Y pair, do not suffer such defects.  相似文献   

8.
9.
We have developed a protocol for the identification of aberrant chromosome behavior during human male meiosis up to metaphase of the secondary spermatocyte. Histological evaluation by the Johnsen score of a testicular biopsy was combined with immunofluorescence of first meiotic prophase spermatocytes, using antibodies against synaptonemal complex protein 3 (SYCP3) and the product of the ataxia telangiectasia and rad3-related gene (ATR). This combination enables accurate meiotic prophase substaging and the identification of pachytene spermatocytes with asynapsis. Furthermore, we also investigated the competence of late pachytene primary spermatocytes to complete the first meiotic division up to metaphase and of secondary spermatocytes to transform into metaphase by an in vitro challenge with okadaic acid (OA). We tested this protocol on five males with normal Johnsen scores that presented with obstructive azoospermia, five males with low Johnsen scores and non-obstructive azoospermia and six vasectomized control males of proven fertility and normal Johnsen scores. In all azoospermics, the profiling of meiotic prophase stages by immunofluorescence increases the resolving power of the Johnsen score. In both obstructive and non-obstructive azoospermic patients, relatively more leptotene meiotic prophase stages were counted compared to the controls. In non-obstructive azoospermics, a marked heterogeneity in spermatogenesis was found, after combining the results of all three approaches, pointing at functional mosaicism of the germinal epithelium. Asynaptic pachytene spermatocytes were rarely encountered. Also, when first meiotic metaphase could be induced by OA, chiasma counts were normal. In none of the non-obstructive azoospermic males did the pattern of spermatogenesis resemble that of knock-out mouse azoospermics. We conclude that this combined histological and cytological approach enables a detailed phenotypic classification of infertile males, at a level comparable to that applied for male-sterile knock-out mice with a meiotic defect. This may facilitate the identification of candidate genes for human male infertility.  相似文献   

10.
11.
The eukaryotic RecA homologues RAD51 and DMC1 function in homology recognition and formation of joint-molecule recombination intermediates during yeast meiosis. The precise immunolocalization of these two proteins on the meiotic chromosomes of plants and animals has been complicated by their high degree of identity at the amino acid level. With antibodies that have been immunodepleted of cross-reactive epitopes, we demonstrate that RAD51 and DMC1 have identical distribution patterns in extracts of mouse spermatocytes in successive prophase I stages, suggesting coordinate functionality. Immunofluorescence and immunoelectron microscopy with these antibodies demonstrate colocalization of the two proteins on the meiotic chromosome cores at early prophase I. We also show that mouse RAD51 and DMC1 establish protein-protein interactions with each other and with the chromosome core component COR1(SCP3) in a two-hybrid system and in vitro binding analyses. These results suggest that the formation of a multiprotein recombination complex associated with the meiotic chromosome cores is essential for the development and fulfillment of the meiotic recombination process.  相似文献   

12.
13.
When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.  相似文献   

14.
The assembly and disassembly of the synaptonemal complexes (SCs) correlate with the progression of meiotic prophase I. Using immunostaining of the cohesin component SMC3, which is present in the axial elements of the SC, we characterized the synaptic process in chicken oocytes and quantified the frequency of the different prophase stages at hatching and at 3 different ages after hatching. The analysis provides detailed quantitative data regarding the meiotic stages in the chicken ovary showing that the maximum amount of pachytene oocytes is found around hatching and that oocytes reach the diplotene stage 5 days after entering into meiosis. We confirmed the asynchrony of the meiotic development in the female chicken gonad showing that the ovary has a composite population of cells at different stages from day 17 before hatching and for several days after hatching. The significance of these results is discussed in relationship to functional experimental procedures that involve avian oocytes.  相似文献   

15.
Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing,synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation,and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.  相似文献   

16.
Synaptonemal complex (SC) formation must be regulated to occur only between aligned pairs of homologous chromosomes, ultimately ensuring proper chromosome segregation in meiosis. Here we identify SYP-3, a coiled-coil protein that is required for assembly of the central region of the SC and for restricting its loading to occur only in an appropriate context, forming structures that bridge the axes of paired meiotic chromosomes in Caenorhabditis elegans. We find that inappropriate loading of central region proteins interferes with homolog pairing, likely by triggering a premature change in chromosome configuration during early prophase that terminates the search for homologs. As a result, syp-3 mutants lack chiasmata and exhibit increased chromosome mis-segregation. Altogether, our studies lead us to propose that SYP-3 regulates synapsis along chromosomes, contributing to meiotic progression in early prophase.  相似文献   

17.
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.  相似文献   

18.
19.
20.
Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes.Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination,homologous chromosome synapsis and reductional chromosome segregation to occur.In mammalian cells,DNA physically associates with histones to form chromatin,which can be modified by methylation,phosphorylation,ubiquitination and acetylation to help regulate higher order chromatin structure,gene expression,and chromosome organisation.Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells,and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase.This review will discuss the role of chromatin modifications in meiotic recombination,homologous chromosome synapsis and regulation of meiotic gene expression in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号