首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new mutant strain of Escherichia coli in which phosphorylation is uncoupled from electron transport was isolated. A genetic-complementation analysis, using partial diploid strains, showed that the new mutant allele, uncD409, is in a gene distinct from the other previously identified genes uncA, uncB and uncC. A strain carrying the uncd409 allele has no Mg2+ ion-stimulated adenosine triphosphatase activity and is therefore phenotypically similar to strains carrying the uncA401 mutant allele. Complementation between the uncA401 and the uncD409 alleles occurred, as indicated by growth of partial diploid strains on succinate and their growth yields on limiting concentrations of glucose. Complementation was confirmed by using membranes prepared from the above partial diploids. Such membranes were found to have Mg2+-stimulated adenosine triphosphatase activity, ATP-dependent transhydrogenase activity ADP-induced atebrin-fluorescence quenching and low but significant amounts of oxidative phosphorylation.  相似文献   

2.
Mutants of Escherichia coli defective in coupling electron transport to synthesis of ATP (unc) were isolated and screened for Mg2+-ATPase activity using a rapid and sensitive Millipore filtration assay. An episome (F′16) carrying ATPase genes was used to map the unc mutations near the ilv (isoleucine-valine) operon. Mutants missing membrane ATPase activity do not multiply anaerobically on glucose as energy source unless supplied with exogenous electron acceptors such as NO3. Likewise, in the absence of exogenous electron acceptors anaerobic active transport of proline is blocked. These observations suggest that membrane ATPase has an essential role in membrane functions linked to glycolysis and thus may play an important role in energy conversion in the anaerobic membrane.  相似文献   

3.
Lysine 85 (K85) in the primary structure of the catalytic subunit of the periplasmic nitrate reductase (NAP-A) of Ralstonia eutropha H16 is highly conserved in periplasmic nitrate reductases and in the structurally related catalytic subunit of the formate dehydrogenases of various bacterial species. It is located between an [4Fe-4S] center and one of the molybdopterin-guanine dinucleotides mediating the through bonds electron flow to convert the specific substrate of the respective enzymes. To examine the role of K85, the structure of NAP-A of R. eutropha strain H16 was modeled on the basis of the crystal structure from the Desulfovibrio desulfuricans enzyme (Dias et al. Structure Fold Des. 7(1) (1999) 65) and K85 was replaced by site-directed mutagenesis, yielding K85R and K85M, respectively. The specific nitrate reductase activity was determined in periplasmic extracts. The mutant enzyme carrying K85R showed 23% of the wild-type activity, whereas the replacement by a polar, uncharged residue (K85M) resulted in complete loss of the catalytic activity. The reduced nitrate reductase activity of K85R was not due to different quantities of the expressed gene product, as controlled immunologically by NAP-specific antibodies. The results indicate that K85 is optimized for the electron transport flux to reduce nitrate to nitrite in NAP-A, and that the positive charge alone cannot meet further structural requirement for efficient electron flow.  相似文献   

4.
M Inuzuka 《FEBS letters》1985,181(2):236-240
DNA replication of plasmid R6K initiates at three unique sites, ori alpha, ori beta, and ori gamma. Replicating DNA molecules of a deletion derivative of R6K were synthesized in an in vitro system containing pi protein fraction from cells carrying a mini-R6K derivative that produced only this initiation protein as an R6K-encoded protein and analyzed by electron miscroscopy. Requirement of pi protein for the activity of all these three replication origins in vitro was verified. Frequencies of initiation at the three origins were almost equal.  相似文献   

5.
In the present work, the repairing response of the iliac arterial wall is studied after carrying out autografts in segments of these vessels. The formation of the intimal hyperplasia, which occurred in all the cases, was followed at the biochemical level (tritium thymidine incorporation) and with light and electron microscopy. The adventitial layer showed great activity during the repairing process. We believe that it plays an important role not only in neoadventitial formation, but also in myointimal raising.  相似文献   

6.
In the mammalian mitochondrial electron transfer system, the majority of electrons enter at complex I, go through complexes III and IV, and are finally delivered to oxygen. Previously we generated several mouse cell lines with suppressed expression of the nuclearly encoded subunit 4 of complex IV. This led to a loss of assembly of complex IV and its defective function. Interestingly, we found that the level of assembled complex I and its activity were also significantly reduced, whereas levels and activity of complex III were normal or up-regulated. The structural and functional dependence of complex I on complex IV was verified using a human cell line carrying a nonsense mutation in the mitochondrially encoded complex IV subunit 1 gene. Our work documents that, although there is no direct electron transfer between them, an assembled complex IV helps to maintain complex I in mammalian cells.  相似文献   

7.
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor). The Deltacox16 strain was isolated as a BI-1-inactive mutant; it was disrupted in a component of the mitochondrial cytochrome c oxidase. Other mutants defective in mitochondrial electron transport showed a similar phenotype. ATP levels were markedly decreased in all these mutants, suggesting that BI-1 requires normal electron transport activity to suppress cell death in yeast.  相似文献   

8.
The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT in vitro and with a model system of polyacrylamide films incorporating either purified glucose-6-phosphate dehydrogenase or intact rat liver parenchymal cells. It was found that every assay in which a tetrazolium salt is used, whether or not an electron carrier is present, has to be carried out in darkness. Menadione did not appear to be useful, because electrons were not found to be transferred directly from reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) to this compound. Phenazine methosulfate at higher concentrations and meldola blue at concentrations optimal for carrying electrons to tetrazolium salts yielded a high level of "nothing dehydrogenase" activity in cell-containing films, but no inhibition of enzymatic activity was found. Factors involved in the interference of oxygen with tetrazolium salt reduction are discussed. 1-Methoxyphenazine methosulfate did not stain cellular compounds and caused only a very low nothing dehydrogenase activity. The cytochemical demonstration of dehydrogenase activity was shown to be independent on the concentration of 1-methoxyphenazine methosulfate used (50-1000 microM). It is concluded that 1-methoxyphenazine methosulfate is the exogenous electron carrier of choice.  相似文献   

9.
Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 degrees C and the Q band was upshifted by 5 degrees C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700(+) was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.  相似文献   

10.
Acetolactate synthase (ALS) specific activity was evaluated in isogenic lines of Saccharomyces cerevisiae carrying the wild-type ILV2 gene or mutations in this gene for resistance to the herbicide sulfometuron methyl (SM). Statistical comparisons were made between two nuclear alleles and among five alleles borne on a YE chimaeric plasmid transformed into a strain carrying a 1.5-kilobase deletion in the nuclear ILV2 gene. Decreased ALS activity of plasmid-borne SM-resistant mutations was shown not to be caused by copy number effects. ALS-specific activity in strains carrying the wild-type ILV2 allele exhibited strong feedback inhibition by valine and was sensitive to SM. All nuclear and plasmid-borne SM-resistance alleles resulted in ALS-specific activity highly resistant to SM and resistant to valine feedback inhibition.  相似文献   

11.
Photosynthetic organisms support cell metabolism by harvesting sunlight and driving the electron transport chain at the level of thylakoid membranes. Excitation energy and electron flow in the photosynthetic apparatus is continuously modulated in response to dynamic environmental conditions. Alternative electron flow around photosystem I plays a seminal role in this regulation contributing to photoprotection by mitigating overreduction of the electron carriers. Different pathways of alternative electron flow coexist in the moss Physcomitrella patens, including cyclic electron flow mediated by the PGRL1/PGR5 complex and pseudo‐cyclic electron flow mediated by the flavodiiron proteins FLV. In this work, we generated P. patens plants carrying both pgrl1 and flva knock‐out mutations. A comparative analysis of the WT, pgrl1, flva, and pgrl1 flva lines suggests that cyclic and pseudo‐cyclic processes have a synergic role in the regulation of photosynthetic electron transport. However, although both contribute to photosystem I protection from overreduction by modulating electron flow following changes in environmental conditions, FLV activity is particularly relevant in the first seconds after a light change whereas PGRL1 has a major role upon sustained strong illumination.  相似文献   

12.
13.
In the photosynthetic bacterium Rhodobacter capsulatus, a putative membrane-bound complex encoded by the rnfABCDGEH operon is thought to be dedicated to electron transport to nitrogenase. In this study, the whole rnf operon was cloned under the control of the nifH promoter in plasmid pNR117 and expressed in several rnf mutants. Complementation analysis demonstrated that transconjugants which integrated plasmid pNR117 directed effective biosynthesis of a functionally competent complex in R. capsulatus. Moreover, it was found that strains carrying pNR117 displayed nitrogenase activities 50 to 100% higher than the wild-type level. The results of radioactive labeling experiments indicated that the intracellular content of nitrogenase polypeptides was marginally altered in strains containing pNR117, whereas the levels of the RnfB and RnfC proteins present in the membrane were four- and twofold, respectively, higher than the wild-type level. Hence, the enhancement of in vivo nitrogenase activity was correlated with a commensurate overproduction of the Rnf polypeptides. In vitro nitrogenase assays performed in the presence of an artificial electron donor indicated that the catalytic activity of the enzyme was not increased in strains overproducing the Rnf polypeptides. It is proposed that the supply of reductants through the Rnf complex might be rate limiting for nitrogenase activity in vivo. Immunoprecipitation experiments performed on solubilized membrane proteins revealed that RnfB and RnfC are associated with each other and with additional polypeptides which may be components of the membrane-bound complex.  相似文献   

14.
A tetracycline resistance (Tcr) gene that was found originally on two Bacteroides plasmids (pBF4 and pCP1) confers tetracycline resistance on Escherichia coli, but only when it is grown aerobically. Using maxicells, we have identified a 44-kilodalton protein which is encoded by the region that carries the Tcr gene and which may be the Tcr gene product. Localization experiments indicate that this 44-kilodalton protein is cytoplasmic. To determine whether the tetracycline resistance gene is expressed under anaerobic conditions, we have constructed a protein fusion between the Tcr gene and lacZ. In strains of E. coli carrying the fusion, beta-galactosidase activity was the same when the cells were grown under anaerobic conditions as when the cells were grown under aerobic conditions. This indicates that the tetracycline resistance gene product is made under anaerobic conditions but does not work. The failure of the Tcr protein to function under anaerobic conditions was not due to a requirement for function of the anaerobic electron transport system, because neither nitrate nor fumarate added to anaerobic media restored tetracycline resistance. Inhibition of the aerobic electron transport system with potassium cyanide did not prevent growth on tetracycline of cells containing the Tcr gene. A heme-deficient mutant, E. coli SHSP19, which carries the Tcr gene, was still resistant to tetracycline even when grown in heme-free medium. These results indicate that functioning of the Tcr gene product is not dependent on the aerobic electron transport system. Thus the requirement for aerobic conditions appears to reflect a requirement for oxygen. Spent medium from an E. coli strain carrying the Tcr gene, which was grown in medium containing tetracycline (50 micrograms/ml), did not inhibit growth of a tetracycline-susceptible strain of E. coli. Thus, the Tcr gene product may be detoxifying tetracycline.  相似文献   

15.
Anomalies in photosynthetic activity of the soybean cell line STR7, carrying a single mutation (S268P) in the chloroplastic gene psbA that codes for the D1 protein of the photosystem II, have been examined using different spectroscopic techniques. Thermoluminescence emission experiments have shown important differences between STR7 mutant and wild type cells. The afterglow band induced by both white light flashes and far-red continuous illumination was downshifted by about 4 °C and the Q band was upshifted by 5 °C. High temperature thermoluminescence measurements suggested a higher level of lipid peroxidation in mutant thylakoid membranes. In addition, the reduction rate of P700+ was significantly accelerated in STR7 suggesting that the mutation led to an activation of the photosystem I cyclic electron flow. Modulated fluorescence measurements performed at room temperature as well as fluorescence emission spectra at 77 K revealed that the STR7 mutant is defective in state transitions. Here, we discuss the hypothesis that activation of the cyclic electron flow in STR7 cells may be a mechanism to compensate the reduced activity of photosystem II caused by the mutation. We also propose that the impaired state transitions in the STR7 cells may be due to alterations in thylakoid membrane properties induced by a low content of unsaturated lipids.  相似文献   

16.
The oxidation of 10 polycyclic aromatic hydrocarbons (PAH) by cytochrome P450(BSbeta) using three different electron acceptors is reported. Three PAH were found to be substrates for the oxidation by P450(BSbeta), namely anthracene, 9-methyl-anthracene and azulene. The respective oxidation products were identified by reversed-phase high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry. In addition, 10 drug-like compounds were investigated for their effects on the catalytic activity of P450(BSbeta) by carrying out inhibition studies. The stability of P450(BSbeta) against hydrogen peroxide, cumene, and ter-butyl hydroperoxide was determined. Overall, the results of this study suggested that the P450(BSbeta) enzyme represents a powerful catalyst in terms of the catalytic activity and operational stability.  相似文献   

17.
Three pairs of isonuclear lines of cytoplasmic male sterile (CMS) and fertile Petunia cells (Petunia hybrida [Hook] Vilm. and Petunia parodii L.S.M.) grown in suspension culture were examined for sensitivity to inhibitors of respiratory electron transport at time-points after transfer into fresh media. Cells from CMS lines differed from cells of fertile lines in their utilization of the cyanide-insensitive oxidase pathway. Under our culture regime, after approximately 3 days of culture cells from the CMS lines exhibited much lower cyanide-insensitive, salicylhydroxamic acid-sensitive respiration than cells from the fertile lines. This respiratory difference was shown to be specific to the mitochondrial alternative oxidase pathway by using other characteristic inhibitors of mitochondrial electron transport in experiments with isolated mitochondria. Immature anthers from CMS plants also showed lower alternative oxidase activity relative to anthers from male fertile plants, but no such difference was detected in leaf tissue, ovary or perianth tissue, or anthers collected just prior to anthesis. A cell line from a fertile plant carrying a nuclear fertility restorer gene and the CMS cytoplasm exhibited increased activity of the alternative pathway compared with the CMS lines.  相似文献   

18.
Maltose uptake and its regulation in Bacillus subtilis   总被引:4,自引:0,他引:4  
Extracts prepared from cultures of Bacillus subtilis, grown on maltose as the sole carbon source, lacked maltose phosphotransferase system activity. There was, however, evidence for a maltose phosphorylase activity, and such extracts also possessed both glucokinase and glucose phosphotransferase system activities. Maltose was accumulated by whole cells of B. subtilis by an energy-dependent mechanism. This uptake was sensitive to the effects of uncouplers, suggesting a role for the proton-motive force in maltose transport. Accumulation of maltose was inhibited in the presence of glucose, and there was no accumulation of maltose by a strain carrying the ptsI6 null-mutation. A strain carrying the temperature-sensitive ptsI1 mutation accumulated maltose normally at 37 degrees C but, in contrast to the wild-type, was devoid of maltose transport activity at 47 degrees C. The results indicate a role for the phosphotransferase system in the regulation of maltose transport activity in this organism.  相似文献   

19.
Mitochondria morphogenesis during spermatogenesis in Drosophila carrying merlin gene mutations was examined by electron and fluorescent microscopy. Hypomorphic allele mer3; null allele mer4; and genetic construct Mer +, which encodes full-size protein, were applied in the experiments. A detailed analysis of anomalies in spermatogenesis induced by these mutations shows that Merlin is important for the formation, structural support, and modification of the apparatus of mitochondria (nebenkern). The possible role of a Merlin protein as an adaptor protein that can link mitochondria with the cytoskeleton and its activity defined by molecule conformation are discussed.  相似文献   

20.
Abstract A fragment of Staphylococcus aureus DNA encoding the glucosaminidase determinant was cloned in Escherichia coli by inserting the Sau 3A genomic fragments in the Bam HI site of the plasmid vector pBR322. One clone selected on the basis of its lytic activity was shown to contain a hybrid plasmid (pEU213) carrying a 4.7 kb insert of S. aureus DNA. Lytic activity was tested using different assays, and the enzyme production was confirmed by immunological reactions. An appreciable reduction of lytic activity was noted after few subcultures. The E. coli carrying pEU213 had a slower growth rate and increased autolytic activity compared to the parental strain. The possible reasons for this behavior are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号