首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RuBPcarboxylase activity was measured in extracts of barley (Hordeum Vulgare L., cv. HOP) seedlings both with the standard radiometric method and by measuring D-3-phosphoglyceric acid formed enzymically in a two stage assay. In the different conditions used, characterized by different NaHCO3 concentrations, different pH and the presence and absence of oxygen, essentially the same ratio of D-3-PGA formed per 14CO2 fixed was obtained. This ratio respected the known stoichiometry of two molecules of D-3-PGA formed per CO2 fixed.It is suggested that measurement of D-3-PGA enzymically in a two stage assay can be routinely used for the determination of RuBP case activity instead of the radiometric method. The advantages and the validity of the method are discussed.Abbreviations Bicine N, N-bis-(2-hydroxyethyl)-glycine - NADH nicotinamide adenine dinucleotide, reduced - PGA phosphoglyceric acid - RuBP ribulose-1-5-bisphosphate  相似文献   

2.
Carefully isolated intact spinach chloroplasts virtually free of contamination of other organelles effectively form β-carotene from NaH14CO3 or [U-14C]-3-phosphoglycerate (PGA) under photosynthetic conditions. The photosynthate pool formed in chloroplasts from 1 to 2 millimolar [U-14C]-3-PGA or 3 to 6 millimolar NaH14CO3 was fully sufficient to supply β-carotene synthesis with intermediates for about 1 hour at maximal rates of about 20 nanomoles 14C incorporated per milligram chlorophyll per hour. Fatty acid synthesis remains, under these circumstances, in linear dependence to substrate concentrations with far lower activity. Isotopic dilution of the β-carotene synthesis by adding unlabeled glyceraldehyde 3-phosphate, dihydroxyacetone-P, 3-PGA, 2-PGA, phosphoenolpyruvate, pyruvate, respectively, may be interpreted as a direct substrate flow from photosynthetically fixed CO2 to isopentenyl pyrophosphate synthesizing system. Unlabeled acetate did not dilute β-carotene synthesis. Fatty acid synthesis acted similarly with unlabeled substrates; but it also was diluted by unlabeled acetate. These results indicate a tight linkage of photosynthetic carbon fixation and plastid isoprenoid synthesis.  相似文献   

3.
Atkins CA 《Plant physiology》1978,62(4):486-490
The effects of CO2 concentration and illumination on net gas exchange and the pathway of 14CO2 fixation in detached seeds from developing fruits of Lupinus albus (L.) have been studied.

Increasing the CO2 concentration in the surrounding atmosphere (from 0.03 to 3.0% [v/v] in air) decreased CO2 efflux by detached seeds either exposed to the light flux equivalent to that transmitted by the pod wall (500 to 600 micro-Einsteins per square meter per second) in full sunlight or held in darkness. Above 1% CO2 detached seeds made a net gain of CO2 in the light (up to 0.4 milligrams of CO2 fixed per gram fresh weight per hour) but 14CO2 injected into the gas space of intact fruits (containing around 1.5% CO2 naturally) was fixed mainly by the pod and little by the seeds.

Throughout development seeds contained ribulose-1,5-bisphosphate carboxylase activity (EC 4.1.1.39), especially in the embryo (up to 99 micromoles of CO2 fixed per gram fresh weight per hour) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) in both testa (up to 280 micromoles of CO2 fixed per gram fresh weight per hour) and embryo (up to 355 micromoles of CO2 fixed per gram fresh weight per hour).

In kinetic experiments the most significant early formed product of 14CO2 fixation in both light and dark was malate but in the light phosphoglyceric acid and sugar phosphates were also rapidly labeled. 14CO2 fixation in the light was linked to the synthesis of sugars and amino acids but in the dark labeled sugars were not formed.

  相似文献   

4.
J. D. Mahon  H. Fock  D. T. Canvin 《Planta》1974,120(3):245-254
Summary Sunflower (Helianthus annuus L.) leaf discs were exposed to 14CO2 or 14CO2 followed by 12CO2 at 21% O2 and three different CO2 concentrations. After intervals of up to 15 min, the specific activity of some photosynthetic intermediates was determined. At all CO2 concentrations, the specific activity of 3-phosphoglyceric acid (3-PGA) increased most rapidly and after 15 min of 14CO2 feeding was 92% (967 ppm CO2), 87% (400 ppm CO2) and 53% (115 ppm CO2) of CO2 supplied to the assimilation chamber. The specific activity of glycine, serine and the photorespiratory CO2 was similar at all CO2 concentrations, in aggreement with their proposed close metabolic relationship in the glycolate pathway. However, the kinetics of serine and glycine labelling suggested that serine was not totally derived from glycine. Because the specific activity of these glycolate-pathway intermediates was very differnet from that of 3-PGA at all CO2 concentrations, not all of the carbon traversing this pathway came directly from the Calvin cycle. The non-equilibration of the 3-PGA with the feeding gas reflects the recycling of C from the glycolate pathway into the photosynthetic reduction cycle. Measurements of the rates of CO2 evolution in the light and estimates of the C flux through the glycolate pathway suggest that the photorespiratory activity was high and similar at 115 ppm CO2 and 400 ppm CO2 but inhibited at 967 ppm CO2.  相似文献   

5.
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes carboxylation of ribulose-1,5-bisphosphate, the first in a series of reactions leading to the incorporation of atmospheric CO2 into biomass. Rubisco requires Rubisco activase (RCA), an AAA+ ATPase that reactivates Rubisco by remodelling the conformation of inhibitor-bound sites. RCA is regulated by the ratio of ADP:ATP, with the precise response potentiated by redox regulation of the alpha-isoform. Measuring the effects of ADP on the activation of Rubisco by RCA using the well-established photometric assay is problematic because of the adenine nucleotide requirement of 3-phosphoglycerate (3-PGA) kinase. Described here is a novel assay for measuring RCA activity in the presence of variable ratios of ADP:ATP. The assay couples the formation of 3-PGA from ribulose 1,5-bisphosphate and CO2 to NADH oxidation through cofactor-dependent phosphoglycerate mutase, enolase, PEP carboxylase and malate dehydrogenase. The assay was used to determine the effects of Rubisco and RCA concentration and ADP:ATP ratio on RCA activity, and to measure the activation of a modified Rubisco by RCA. Variations of the basic assay were used to measure the activation state of Rubisco in leaf extracts and the activity of purified Rubisco. The assay can be automated for high-throughput processing by conducting the reactions in two stages.  相似文献   

6.
We demonstrate that allantoate is catabolized in soybean seedcoat extracts by an enzyme complex that has allantoate amidohydrolase and ureidoglycolate amidohydrolase activities. Soybean seedcoat extracts released 14CO2 from [ureido-14C]ureidoglycolate under conditions in which urease is not detectable. CO2 and glyoxylate are enzymically released in a one to one ratio indicating that ureidoglycolate amidohydrolase is the responsible activity. Ureidoglycolate amidohydrolase has a Km of 85 micromolar for ureidoglycolate. Glyoxylate and CO2 are enzymically released from allantoate at linear rates in a one to 2.3 ratio from 5 to 30 min. This ratio is consistent with the degradation of allantoate to two CO2 and one glyoxylate with approximately 23% of the allantoate degraded reacting with 2-mercaptoethanol to yield 2-hydroxyethylthio, 2′-ureido, acetate (RG Winkler, JC Polacco, DG Blevins, DD Randall 1985 Plant Physiol 79: 787-793). That [14C]urea production from [2,7-14C]allantoate is not detectable indicates that allantoate-dependent glyoxylate production is enzymic and not a result of nonenzymic hydrolysis of a ureido intermediate (nonenzymic hydrolysis releases urea). These results and those from intact tissue studies (RG Winkler DG Blevins, JC Polacco, DD Randall 1987 Plant Physiol 83: 585-591) suggest that soybeans have a second amidohydrolase reaction (ureidoglycolate amidohydrolase) that follows allantoate amidohydrolase in allantoate catabolism. The rate of 14CO2 release from [2,7-14C]allantoate is not reduced when the volume of the reaction mixture is increased, suggesting that the release of 14CO2 is not dependent on the accumulation of free intermediates. That [2,7-14C]allantoate dependent 14CO2 release is not proportionally diluted by unlabeled ureidoglycolate indicates that the reaction is carried out by an enzyme complex. This is the first report of ureidoglycolate amidohydrolase activity in any organism and the first in vitro demonstration in plants that the ureido-carbons of allantoate can be completely degraded to CO2 without a urea intermediate.  相似文献   

7.
The metabolic pathways of one-carbon compounds utilized by colorless sulfur bacterium Beggiatoa leptomitoformis D-402 were revealed based on comprehensive analysis of its genomic organization, together with physiological, biochemical and molecular biological approaches. Strain D-402 was capable of aerobic methylotrophic growth with methanol as a sole source of carbon and energy and was not capable of methanotrophic growth because of the absence of genes of methane monooxygenases. It was established that methanol can be oxidized to CO2 in three consecutive stages. On the first stage methanol was oxidized to formaldehyde by the two PQQ (pyrroloquinolinequinone)-dependent methanol dehydrogenases (MDH): XoxF and Mdh2. Formaldehyde was further oxidized to formate via the tetrahydromethanopterin (H4MPT) pathway. And on the third stage formate was converted to CO2 by NAD+-dependent formate dehydrogenase Fdh2. Finally, it was established that endogenous CO2, formed as a result of methanol oxidation, was subsequently assimilated for anabolism through the Calvin–Benson–Bassham cycle. The similar way of one-carbon compounds utilization also exists in representatives of another freshwater Beggiatoa species—B. alba.  相似文献   

8.
We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.  相似文献   

9.
The influences of photosynthetically active radiation (PAR) and water status on nocturnal Crassulacean acid metabolism (CAM) were quantitatively examined for a widely cultivated cactus, Opuntia ficus-indica (L.) Miller. When the total daily PAR was maintained at 10 moles photons per square meter per day but the instantaneous PAR level varied, the rate of nocturnal H+ accumulation (tissue acidification) became 90% saturated near 700 micromoles per square meter per second, a PAR level typical for similar light saturation of C3 photosynthesis. The total nocturnal H+ accumulation and CO2 uptake reached 90% of maximum for a total daily PAR of about 22 moles per square meter per day. Light compensation occurred near 0 moles per square meter per day for nocturnal H+ accumulation and 4 moles per square meter per day for CO2 uptake. Above a total daily PAR of 36 moles per square meter per day or for an instantaneous PAR of 1150 micromoles per square meter per second for more than 6 hours, the nocturnal H+ accumulation actually decreased. This inhibition, which occurred at PAR levels just above those occurring in the field, was accompanied by a substantial decrease in chlorophyll content over a 1-week period.

A minimum ratio of H+ accumulated to CO2 taken up of 2.5 averaged over the night occurred for a total daily PAR of 31 moles per square meter per day under wet conditions. About 2 to 6 hours into the night under such conditions, a minimum H+-to-CO2 ratio of 2.0 was observed. Under progressively drier conditions, both nocturnal H+ accumulation and CO2 uptake decreased, but the H+-to-CO2 ratio increased. A ratio of two H+ per CO2 is consistent with the H+ production accompanying the conversion of starch to malic acid, and it apparently occurs for O. ficus-indica when CAM CO2 uptake is strongly favored over respiratory activity.

  相似文献   

10.
Isolated intact chloroplasts of Chlamydomonas reinhardii were found to catalyze photoreduction of CO2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when adapted under an atmosphere of H2 demonstrating the association of a hydrogenase and anaerobic adaptation system with these plastids. The specific activity of photoreduction was approximately one third that detected in cells and protoplasts. Photoreduction was found to have a lower osmoticum optimum relative to aerobically maintained chloroplasts (50 millimolar versus 120 millimolar mannitol). 3-Phosphoglycerate (3-PGA) stimulated photoreduction up to a peak at 0.25 millimolar beyond which inhibition was observed. In the absence of 3-PGA, inorganic phosphate had no effect on photoreduction but in the presence of 3-PGA, inorganic phosphate also stimulated the reaction. Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone inhibited photoreduction but inhibition by the former could be partially overcome by exogenously added ATP. The intact plastid can also catalyze photoevolution of H2 while lysed chloroplast extracts catalyzed the reduction of methyl viologen by H2. Both reactions occurred at rates approximately one-third of those found in cells. The oxyhydrogen reaction in the presence or absence of CO2 was not detected.  相似文献   

11.
Radiometric Method for the Detection of Coliform Organisms in Water   总被引:7,自引:7,他引:0       下载免费PDF全文
A new radiometric method for the detection of coliform bacteria in water has been described. The method is based on the release of 14CO2 from [14C]lactose by bacteria suspended in growth medium and incubated at 37 C. The evolved 14CO2 is trapped by hyamine hydroxide and counted in a liquid scintillation spectrometer. The method permits the detection of 1 to 10 organisms within 6 h of incubation. Coliform bacteria suspended in water for several days recover from starvation and may be quantitated by the proposed method. Bacteria from water samples may also be concentrated by filtration through membrane filters and detected by the radiometric assay.  相似文献   

12.
A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed.

When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids.

  相似文献   

13.
Effects of ocean acidification on Emiliania huxleyi strain RCC 1216 (calcifying, diploid life-cycle stage) and RCC 1217 (non-calcifying, haploid life-cycle stage) were investigated by measuring growth, elemental composition, and production rates under different pCO2 levels (380 and 950 μatm). In these differently acclimated cells, the photosynthetic carbon source was assessed by a 14C disequilibrium assay, conducted over a range of ecologically relevant pH values (7.9–8.7). In agreement with previous studies, we observed decreased calcification and stimulated biomass production in diploid cells under high pCO2, but no CO2-dependent changes in biomass production for haploid cells. In both life-cycle stages, the relative contributions of CO2 and HCO3 ? uptake depended strongly on the assay pH. At pH values ≤ 8.1, cells preferentially used CO2 (≥ 90 % CO2), whereas at pH values ≥ 8.3, cells progressively increased the fraction of HCO3 ? uptake (~45 % CO2 at pH 8.7 in diploid cells; ~55 % CO2 at pH 8.5 in haploid cells). In contrast to the short-term effect of the assay pH, the pCO2 acclimation history had no significant effect on the carbon uptake behavior. A numerical sensitivity study confirmed that the pH-modification in the 14C disequilibrium method yields reliable results, provided that model parameters (e.g., pH, temperature) are kept within typical measurement uncertainties. Our results demonstrate a high plasticity of E. huxleyi to rapidly adjust carbon acquisition to the external carbon supply and/or pH, and provide an explanation for the paradoxical observation of high CO2 sensitivity despite the apparently high HCO3 ? usage seen in previous studies.  相似文献   

14.
A photoautotrophic soybean suspension culture (SB-P) was used to study CO2 assimilation while exposed to elevated or ambient CO2 levels. These studies showed that under elevated CO2 (5% v/v) malate is the dominant fixation product, strongly suggesting that phosphoenolpyruvate carboxylase (PEPCase) is the primary enzyme involved in carbon fixation in these cells under their normal growth conditions. Citrate and [aspartate + glutamate] were also significant fixation products during fifteen minutes of exposure to 14CO2. During the ten minute unlabeled CO2 chase however, 14C-malate continued to increase while citrate and [aspartate + glutamate] declined. Fixation of 14CO2 under ambient CO2 levels (0.037%) showed a very different product pattern as 3-phosphoglycerate was very high in the first one to two minutes followed by increases in [serine + glycine] and [aspartate + glutamate]. Hexose phosphates were also quite high initially but then declined relatively rapidly. Thus, the carbon fixation pattern at ambient CO2 levels resembles somewhat that seen in C3 leaf cells while that seen at elevated CO2 levels more closely resembles that of a C4 plant. The initial fixation product of C3 plants, 3-PGA, was never detectable under high CO2 conditions. These data suggest that an in vitro photoautotrophic system would be suitable for studying carbon fixation physiology during photosynthetic and non-photosynthetic growth.Abbreviations SB-P photoautotrophic soybean cells - PEPCase phosphoenol-pyruvate carboxylase - RuBPCase ribulose bisphosphate carboxylase/oxygenase - 3-PGA 3-phosphoglycerate  相似文献   

15.
The in vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase) (micromoles CO2 fixed per minute per milligram enzyme) from a number of C3 and C4 species and one green alga were measured. RuBPCases from species which utilize the C4 pathway have a specific activity ~2-fold higher than those from C3 species. RuBPCase from Chlamydomonas reinhardtii has a specific activity similar to the C4 enzyme. Higher specific activity forms of RuBPCase are associated with a decreased enzyme affinity for CO2 (increased Km[CO2]). A small but significant difference in the specific activity of RuBPCase from two C4 decarboxylation types was also observed. The relationship between enzymic properties and the presence or absence of a CO2 concentrating mechanism is discussed.  相似文献   

16.
Shunichi Takahashi 《BBA》2006,1757(3):198-205
We demonstrated recently that, in intact cells of Chlamydomonas reinhardtii, interruption of CO2 fixation via the Calvin cycle inhibits the synthesis of proteins in photosystem II (PSII), in particular, synthesis of the D1 protein, during the repair of PSII after photodamage. In the present study, we investigated the mechanism responsible for this phenomenon using intact chloroplasts isolated from spinach leaves. When CO2 fixation was inhibited by exogenous glycolaldehyde, which inhibits the phosphoribulokinase that synthesizes ribulose-1,5-bisphosphate, the synthesis de novo of the D1 protein was inhibited. However, when glycerate-3-phosphate (3-PGA), which is a product of CO2 fixation in the Calvin cycle, was supplied exogenously, the inhibitory effect of glycolaldehyde was abolished. A reduced supply of CO2 also suppressed the synthesis of the D1 protein, and this inhibitory effect was also abolished by exogenous 3-PGA. These findings suggest that the supply of 3-PGA, generated by CO2 fixation, is important for the synthesis of the D1 Protein. It is likely that 3-PGA accepts electrons from NADPH and decreases the level of reactive oxygen species, which inhibit the synthesis of proteins, such as the D1 protein.  相似文献   

17.
18.
A non-radioisotopic anion-exchange ion chromatographic method for measuring the carboxylation/ oxygenation specificity (τ) of ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is presented. The assay measures the amounts of fixation products at varying [CO2]/[O2] ratios to measure the relative rates of CO2 and O2 fixation reactions. The amount of 3-phosphoglycerate (3-PGA) and phosphoglycolate (PG) in the reaction mixture were measured with a conductivity detector and the specific factor was calculated using the following equations: νc = ([3-PGA] – [PG])/2 and νo = [PG]. By this method, specificity factors for RubisCOs were measured without using radioactive reagents.  相似文献   

19.
Rotatore C  Colman B 《Plant physiology》1990,93(4):1597-1600
Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3 indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope.  相似文献   

20.
The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO2 and H2. Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 ± 0.26 (standard error) milligrams C as CO2 and negligible H2 were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 ± 0.28 milligrams C as CO2, 0.22 ± 0.05 milligrams H2, and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO2. The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of 14CO2 fixation by detached nodules were greater for the cowpea symbiosis (0.56 ± 0.06 and 0.22 milligrams C as CO2 fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 ± 0.02 and 0.01 milligrams C as CO2 fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号