首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Pretoria Salt Pan is shallow (maximum depth 2.85 m) and alkaline (surface water pH varied from 9.6 to 10.9) with pronounced mesothermy (38.2 °C in spring) at a depth of between 0.55 and 0.7 metres. Secchi disc transparencies ranged from 7 to 19 cm. A total ionic concentration gradient increasing from 59 500 mg · ??1 near the surface to 298 000 mg · ??1 at 2.75 metres stabilized the thermally inverted water column. Sodium was the major cation and nearly equal proportions of chloride plus carbonate and bicarbonate accounted for over 98% of the anions. The lake was meromictic with a steep chemocline, persistent thermally inverted temperature profile and complete anoxia at depths greater than 50 cm. The diel pattern of dissolved oxygen distribution involving a nocturnal deoxygenation and diurnal reoxygenation was unusual.  相似文献   

2.
This paper describes the effects of total lake mixing with 16 axial flow (Garton) pumps on the water quality, algal biomass and community metabolism of Arbuckle Lake, Oklahoma.Pumping began on July 1, 1977, and subsequently lowered the thermocline throughout the lake. The concentration of dissolved oxygen rose in formerly anoxic strata. Water quality in the former hypolimnion improved. Concentration of ammonia and BOD5 decreased, and concentrations of manganese remained unchanged in 1977 compared to the control year (1976). But, concentrations of sulfide in the hypolimnion were higher in 1977 than in 1976. Algal biomass as chlorophyll a was about the same in 1977 as in 1978. The depth of the Secchi disc was also the same. An algal bloom did not occur. Pumping decreased the ratio gross production: community respiration as measured by a free water method, suggesting that lakes which are artificially mixed will have lower net primary productivities than lakes which are not artificially mixed.  相似文献   

3.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

4.
Maximum growing depth of submerged macrophytes in European lakes   总被引:5,自引:0,他引:5  
Submerged macrophytes are important elements for the structure and functioning of lake ecosystems. In this study, we used chemical and maximum colonisation depth (C_max) data from 12 European countries in order to investigate how suitable C_max may describe the impact by eutrophication. The analyses include data from 757 lakes and 919 lake years covering oligotrophic to eutrophic lakes. Overall, C_max was closely related to Secchi depth (R 2 = 0.58) and less closely to chlorophyll a (R 2 = 0.31), TP (R 2 = 0.31) and total nitrogen, TN (R 2 = 0.24). The low coefficients of determination between C_max and nutrient concentrations suggest that other response factors than nutrient-phytoplankton-light conditions are important for C_max and that it will be difficult to establish strong relationships between external nutrient loading and C_max. Yearly monitoring for 13–16 years in eight Danish lakes showed considerable year-to-year variability in C_max, which for the individual lakes only related weakly to changes in Secchi depth. The use of C_max as an eutrophication indicator is especially relevant in not very shallow lakes (maximum depth >4–5 m), not too turbid lakes (C_max >1 m) and not very humic lakes (colour <60 mg Pt/l).  相似文献   

5.
One of the most important algal groups in Finnish lakes are the Cryptophyceae. Changes in the community structure of Cryptophyceae in a total of 22 lakes belonging to the Vuoksi river basin in eastern Finland were studied. The existence of lakes with water qualities varying from oligotrophic to eutrophic, often loaded by human activities, provides a good opportunity to study the effects of environmental variables on the occurrence and size variation of Cryptophyceae. In the Vuoksi river basin, the main soil type is moraine. Twelve of the lakes were large or moderately large and with clear, i.e. oligo-humic water, and one lake could be described as a small clear water lake. Eight large or moderately large lakes were humic, with a water colour number of 40–70 mg l?1 Pt, including three lakes impacted by nutrient loads. One lake was naturally eutrophic, with a high water colour number of 100 mg l?1 Pt, and was also impacted by municipal and pulping effluents. CCA-ordination analysis grouped the studied lakes into: (1) clear water lakes, (2) humic lakes and (3) the naturally eutrophic brown water lake. In the CCA-ordination analysis based on cell numbers small Cryptophyceae (Cryptomonadales), Rhodomonas lacustris and the katablepharid Katablepharis ovalis were grouped into the first axis, which was positively correlated with Secchi depth (r=0.58) and NO3N - nitrogen (r=0.24) and negatively with Ptot (r=-0.69), PO4P (r=-0.69) and water colour number (r=-0.66). In humic lakes, medium-sized Cryptophyceae were abundant. The naturally eutrophic lake was grouped into first axis, which is positively correlated with Ptot (r=0.69), PO4P (r=0.69) and water colour number (r=0.66). The lake formed a distinct group with large Cryptophyceae. Only in this lake was the heterotrophic Katablepharis ovalis rather abundant. However, large-sized taxa dominated the biomass of the Cryptophyceae assemblage in all lake types excluding large clear water lakes, where Rhodomonas lacustris dominated and large Cryptophyceae co-dominated.  相似文献   

6.
Application of optical classifications to North European lakes   总被引:1,自引:0,他引:1  
Two classifications (rough and fine) based on the optical properties of water were used to classify 42 Estonian, Finnish, and Swedish lakes. The rough classification was based on the amount of optically active substances (OAS: chlorophyll a, suspended matter, and colored dissolved organic matter) in the water. The basic variables of the fine classification were chlorophyll a concentration, beam attenuation coefficient of light in the photosynthetically active radiation (PAR) region in the water (or corresponding Secchi depth), and the beam attenuation coefficient for filtered water at 380 nm. All optical classes were represented in the studied lakes by both classifications, when they changed their class depending on the seasonal and biological conditions. In a large lake, different parts of the lake belonged to different optical classes. The results obtained by both classifications were in good agreement. There was a concurrence between optical classes and water transparency by Secchi depth. Often the bio-optical variations of water properties are described from the measurements of all three OAS and Secchi depth because these parameters belong to routine monitoring datasets and have been carefully recorded. The water classes provide a method to summarize the influences of the different factors.  相似文献   

7.
Eutrophication and its accompanying algal development in lakes is a nuisance and may be problematic for aquatic life, but limited algal development may have some beneficial consequences. Dissolved oxygen concentration and pH increases attributed to algae in algal-based treatment ponds may occur in eutrophic lakes and can result in the inactivation of faecal coliforms in eutrophic lakes. We investigated the die-off of Escherichia coli placed in dialysis tubes in a eutrophic lake at different depths and locations. The importance of E. coli attachment to algae and suspended matter was also assessed. Algal presence in the lake resulted in significant decay of E. coli. At chlorophyll a concentration ≤0.08 mg L−1 in Weija Lake, decay rate of E. coli is directly proportional to the chlorophyll a concentration of the lake. Under laboratory conditions, as chlorophyll a concentration increases in light however, an optimum chlorophyll a concentration (0.24 mg/L) is reached after which the rate of decay of E. coli decreases. These results show that limited algal presence representing optimum chlorophyll a concentration in restored ecosystems may have public health benefits for rural communities in developing countries that depend on raw water for domestic activities.  相似文献   

8.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

9.
Alga-bacterium relationships between a Bacillus cereus strain L7 and Anabaena flos-aquae were studied based on the effects of the algicidal substances on algal growth indicators such as enzyme activity and membrane lipid peroxidation. When exposed to algae-lytic products at a concentration of 0.05?mg?mL?1, chlorophyll a (Chla), protein and phycobiliprotein contents increased significantly (p?<?0.05); superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and malondialdehyde (MDA) concentrations increased slightly to stimulate the algae growth. When exposed to algae-lytic products at a concentration of 0.5?mg?mL?1, algae growth and composition were inhibited. Chla, protein and phycobiliprotein concentrations decreased significantly (p?<?0.05 for protein, p?<?0.01 for Chla and phycobiliprotein). MDA concentrations increased significantly (p?<?0.05). POD and CAT activities increased by approximately six and three times, respectively, in 24?h compared with the control, then decreased to the initial level in 4?days. Algae-lytic products have not only inhibition but also stimulation effects on A. flos-aquae. Such effects are associated with antioxidative/oxidative reactions as indicated by the biomarkers SOD, POD, CAT, and MDA.  相似文献   

10.
Empirical models used to predict thermocline depths of lakes have typically been based on physical and morpho-metric variables. However, lakes with appreciable levels of dissolved organic material, including those found on the Canadian Precambrian Shield (DOC levels 1.4-12.41 mg/l), have seldom been included in these models. Our analysis suggests that for such lakes, thermocline depth is linked strongly to light penetration (Secchi depth r = 0.83, light extinction r = 0.85) which is strongly related to DOC concentration (Secchi depth r = 0.91, light extinction r = 0.97). A multivariate regression based on small Canadian Shield lakes suggests that DOC is the most important predictor of thermocline depth. Maximum effective length, maximum depth, and chlorophyll a contribute significantly to the prediction power of the regression model, but are of secondary importance in the presence of DOC. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
General relationships between phytoplankton production, chlorophyll, total, dissolved and particulate phosphorus, Secchi depth, humic level, trophic level, fish production and latitude are described by regression equations using an extensive “Soviet” data base covering a wide domain of lake characteristics and a European data base. New systems for defining lake trophic and humic status are presented. The results may be used for more precise estimates of fundamental lake properties and for many practical issues of lake management, e.g., predictions of fish catch. We have used strict chlorophyll‐a concentrations for every trophic class and we have omitted Secchi depth from the trophic classes, since Secchi depth and other variables strongly related to water clarity (like suspended particulate matter and particulate organic carbon) depend on autochthonous production, allochthonous influences and resuspension. We have used the Secchi depth as a simple operational measure of the effective depth of the photic zone. It has also been shown that among these lakes there exist a very strong relationship between primary production and latitude. In fact, 74% of the variability among the lakes in mean summer primary production can be statistically related to variations in latitude. These data also show a strong relationship between primary production and fish yield, which can be used to address many fundamental issues in lake management, like “normal and abnormal fish production”.  相似文献   

12.
A positive relationship was observed between Secchi disc depth and dermal melanin concentration in yellow perch Perca flavescens sampled from 11 humic lakes located on the Canadian Shield in southern Quebec (Canada). Secchi disc depth explained 23% of the variations of dermal melanin concentration. Secchi disc depth and thus water transparency appear to have a positive influence on melanin production in the dermis of P. flavescens.  相似文献   

13.
In order to adequately assess the ecological status of thermally stratified lakes based on chlorophyll, the sampling must cover all productive layers of the water column. Missing the deep chlorophyll maxima (DCM) that often occur in the meta- or hypolimnion of transparent lakes supported by sufficient illumination and good nutrient availability may cause serious underestimation of the productivity and lead to misclassification of the lake ecological status. There is no commonly accepted sampling design for stratified lakes, and various monitoring guides suggest controversial designs. Our aim was to find some robust criteria to assess the probability of occurrence of a DCM and estimate the differences in measured mean chlorophyll concentrations caused by various sampling designs. Our theoretical model showed that the probability of occurrence of a DCM increases with increasing water transparency and decreasing lake size. Empirical data from Italian and Estonian stratified lakes confirmed the results. Testing of different sampling designs on lakes with full measured chlorophyll profiles available showed that taking only surface layer samples will lead with a high probability to an underestimation of the chlorophyll concentration in the trophogenic layer. In order not to miss the Chl peak in stratified lakes, in most cases it would be more precautious not to limit the sampling to the well-mixed epilimnion but to extend it to the whole euphotic layer. Sampling the epilimnion instead of the euphotic zone could cause up to a 70% underestimation of the chlorophyll concentration, an error that would cause a misclassification of the lake by one or even two status classes in a 5-class assessment system. In most cases, the 2.5 * Secchi depths proved a suitable criterion of the sampling depth and only in the case of surface scums, would sampling of a 3 * Secchi depth layer be recommended in order not to miss the deep chlorophyll maximum.  相似文献   

14.
I addressed the question how lake and catchment morphometry influences water chemistry and water quality over a large scale of European lakes, and developed the regression equations between most closely related morphometric and water quality indices. I analysed the data of 1,337 lakes included in the European Environment Agency (EEA) database, carrying out separate analyses for three basic lake types: large lakes (area ≥100 km2, 138 lakes), shallow lakes (mean depth ≤3 m, 153 lakes) and large and shallow lakes (area ≥100 km2 and mean depth ≤8 m, 35 lakes). The study revealed that in Europe, the lakes towards North are larger but shallower and have smaller catchment areas than the southern lakes; lakes at higher altitudes are deeper and smaller and have smaller catchment areas than the lowland lakes. Larger lakes have generally larger catchment areas and bigger volumes, and they are deeper than smaller lakes, but the relative depth decreases with increasing surface area. The lakes at higher latitudes have lower alkalinity, pH and conductivity, and also lower concentrations of nitrogen and phosphorus while the concentration of organic matter is higher. In the lakes at higher altitudes, the concentration of organic matter and nutrient contents are lower and water is more transparent than in lowland lakes. In larger lakes with larger catchment area, the alkalinity, pH, conductivity and the concentrations of nutrients and organic matter are generally higher than in smaller lakes with smaller catchments. If the lake is deep and/or its residence time is long, the water is more transparent and the concentrations of chlorophyll a, organic matter and nutrients are lower than in shallower lakes with shorter residence times. The larger the catchment area is with respect to lake depth, area and volume, the lower is the water transparency and the higher are the concentrations of the nutrients, organic matter and chlorophyll as well as pH, alkalinity and conductivity. The links between lake water quality and morphometry become stronger towards large and shallow lakes. Along the decreasing gradients of latitude, altitude and relative depth, the present phosphorus concentration and its deviation from the reference concentration increases.  相似文献   

15.
Data from four reservoirs representative of different trophic states and with different apparent optical properties were analyzed to determine the relationship of Secchi depth to algal biomass as measured by chlorophyll a. In the eutrophic reservoir Secchi depth was determined partially by the chlorophyll a content (r2 = 0.31) but only when chlorophyll a data from bloom conditions are included. In the two mesotrophic reservoirs, Secchi depth was entirely determined by non-algal turbidity. In the oligotrophic reservoir, Secchi depth was determined neither by chlorophyll a nor non-algal turbidity and was probably determined by dissolved color. When data from the four reservoirs were pooled (N = 205), 53% of the variation in Secchi depth was explained by: SD = 2.55–0.52 ln (Turbidity) + 0.005 (Chlorophyll a). It is apparent that attempts to estimate algal biomass for trophic state classification or other management practices from Secchi depth data are inappropriate even where moderate amounts of non-algal turbidity are present.  相似文献   

16.
Lake Muzahi,Rwanda: limnological features and phytoplankton production   总被引:1,自引:1,他引:0  
Lake Muhazi, a small lake of Rwanda (East Africa) was studied from 1986 to 1990. A dramatic decrease of the catch of Oreochromis niloticus (350 T y−1 in the fifties vs 30 T y−1 in 1982) suggested a loss of productivity or overfishing. In the same period, other ecological changes occurred: the submerged macrophytes regressed and there was a decrease in Secchi depth (0.65 m in 1987 vs 1.5 m in the fifties). Compared to other lakes of the same area, the plankton production seemed low. The results of the present study characterize lake Muhazi as a shallow lake with a rather unstable diurnal stratification and with slight differences in mixing regime between its eastern, deepest part and its western, shallowest part. Secchi disk depth does not vary seasonally to a large extent. The water has a rather high mineral content (conductivity of about 500 μS cm−1 at 25 °C) and low concentrations of dissolved N and P, except in the hypolimnion, where NH inf4 sup+ -N can be high. Two species, Microcystis aeruginosa and Ceratium hirundinella, account for most of the phytoplankton biomass, which is about 50–80 mg chlorophyll a m−2 in the euphotic zone, usually with little seasonal variation. Daily gross production estimates amount to about 6 to 9.5 g O2 m−2 d−1 with a significant difference between the two parts of the lake. Data on C:N and C:P ratio in the phytoplankton suggest that some N deficiency might occur in the eastern part. Moreover, the Zm:Zc ratio could also lead to rather low net production rates (0.21–0.25 d−1 for a mixed layer of 4 m) In conclusion, the primary production of lake Muhazi is medium for African lakes and the hypothesis that decreased planktonic production could account for a reduced fish production should be discarded. Whereas the present yield of the fishery is only 20 kg ha−1 y−1, the yield estimated from primary production ranges between 46 and 64 kg ha−1 y−1. This could be reached through proper management. Finally, some hypotheses are given to explain the ecological changes which occurred in the lake.  相似文献   

17.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

18.
1. We examined 60 clear, stained and glacial lakes in Alaska to quantify the relative importance of climate setting, morphometry, transparency, and lake typology influences on various thermal characteristics including duration of growing season, water temperature, mixing depth (MD) and heat content. We used analysis of variance (ANOVA ) to test for differences in thermal characteristics in association with lake type and employed simple and multiple regression techniques to determine functional relationships between variables. 2. Latitude accounted for 60% of the total variance in length of growing season. Although the date of maximum heat content was consistent among lake types, stained lakes had longer growing seasons compared with clear and glacially turbid lakes. 3. Maximum water temperatures were approximately 3 °C higher in stained lakes and 3 °C lower in glacial lakes compared with clear lakes. Mean water column temperature was significantly lower in glacial lakes (5.9 °C) compared with clear lakes (7.4 °C), but there was no statistical difference between clear and stained lakes (7.2 °C) or between stained and glacial lakes. Maximum surface temperatures were positively related (r2=0.51) to colour (humic stain), but negatively related (r2=0.40) to inorganic turbidity (glacial silt). 4. Only about half of the lakes in our data set underwent summer stratification. None of the glacial lakes developed a distinct thermocline, but stained lakes had shallower MDs (mean 8 m) than clear lakes (mean 12 m). Thus, the MD to total depth ratio for glacial lakes was unity compared with mean values of 0.66 for clear lakes and 0.34 for stained lakes. Fetch explained a significant fraction (51%) of the total variance in MD. Considering all lakes, MD was inversely related to transparency (Secchi depth). In contrast, considering only stratified clear and stained lakes, MD was positively related to Secchi depth (SD), the fraction of the total variance explained was 23%. The sign of the slope was dependent on the mixture of lake types. 5. Despite significant (ANOVA ) differences in water temperatures, growing season, and MDs among the three lake types, there were no statistical differences in the summer heat budget associated with lake type. In addition, heat budgets were poorly correlated with lake area, depth and volume. In contrast, mean water column temperature was strongly and inversely related (r2=0.77) to mean depth. 6. Potential explanations for the similarity in summer heat budget among lake types and weak correlation with morphometry were attributed to different patterns in vertical heat distribution associated with lake typology (colour and turbidity) differences. 7. Multiple linear regression including climatic (latitude and altitude), morphometric, and lake typology (colour and turbidity) factors demonstrated a hierarchical (climate–morphometry–typology) regulation of growing season characteristics, water temperatures, stratification and heat retention. A regional and hierarchical framework for lake thermal characteristics adds to our understanding of potential responses to climatic change and may be important for regional management objectives for fisheries.  相似文献   

19.
Phytoplankton is one of the four key biological quality elements to be used in the ecological classification of lakes in Europe according to the Water Framework Directive (WFD). Chlorophyll a (Chla) has so far been used as the main – and sometimes only – metric to define class boundaries. Chla is often a key metric for lake managers and is used to determine whether and how much action should be taken to reduce the external nutrient loading. In this paper we present the analyses of empirical relationships between nutrient (total phosphorus, TP, total nitrogen, TN) concentrations versus Chla and the proportion of cyanobacteria of total phytoplankton biomass based on data from 440 Danish lakes (1800 lake years). These data represent one eco-region sampled using standardised methodology, thereby minimising the heterogeneity often seen in large datasets. Sampling frequency is important for the precision by which Chla can be determined and the precision is always low with less than 15 summer measurements. As expected Chla was related significantly to TP, but the variability was high, with R2 reaching only 0.47, 0.59 and 0.61 in shallow, stratified and siliceous lakes, respectively, based on summer averages. The correlation was strongest in late summer (R2 up to 0.80) and weak in winter. Chla is also related to TN, but the correlation coefficients were low throughout the year, and in a multiple regression with TP included, TN only added little to the total variability. Similarly, the proportion of cyanobacteria increased significantly with TP, but the correlation was weak. Seasonal and yearly data from five lakes with relatively stable TP show considerable variations in Chla and cyanobacteria abundance during a 20-year monitoring period. It is concluded that despite clear nutrient phytoplankton relationships it will be difficult to define the proposed WFD ecological classes – particularly regarding cyanobacteria. To ensure a high degree of certainty for meeting a specific water quality threshold, lake managers must reduce the external phosphorus loading more strongly than expected from existing simple empirical external loading-inlake TP–Chla relationships.  相似文献   

20.
The relationship between surface sediment diatoms and summer water quality was investigated at 49 lakes in the middle and lower reaches of the Yangtze River. Lakes ranging from oligomesotrophic to hypereutrophic were examined, providing an obvious nutrient gradient. With the shift from mesotrophic to eutrophic levels, diatom multi-ecotypes dominated by epiphytic and facultative planktonic taxa were replaced by nutrient-tolerant planktonic taxa, such as Cyclotella meneghiniana Skvortzow, C. atomus Hustedt,Cyclostephanos Round, and Stephanodiscus Ehrenberg etc., reflecting the nutrient changes in the lake.The relationship between diatoms and summer water quality indices was explored further using numeric analysis. Canonical correspondence analysis (CCA) with forward selection and a Monte Carlo permutation test revealed that of all 25 summer water environmental variables, total phosphorus (TP), chlorophyll a (Chzl a), Secchi depth (SD), dissolved inorganic phosphorus, C1-, SO42-, Mg2 , CO32-, and water depth were significant variables (P<0.05) in explaining diatom distributions. Of these, TP, Chl a, SD, and C1-, were the most important variables. The result of the correlation analysis also showed that a significant correlation exists among these variables, implying that these indices are either interconnected or independent in explaining the diatom data. For phosphorus-limited sites, TP was the most significant variable affecting the diatoms, also affecting changes in Chl a, SD, and iron concentrations. The independence of Chl a may be related to algal competition induced by lake eutrophication, resulting in the feedback to diatom community.In addition to TP, SD can be related to sediment disturbance by wave action and the growth of macrophytes in large shallow lakes. These relationships between diatom ecotypes and water quality provide the basis for a future quantitative reconstruction of historic lake nutrient evolution in the study area and will also provide a wealth of modern ecological knowledge that can be used to interpret fossil diatom records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号