首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The temperature dependence of the yield of in vivo prompt and delayed chlorophyll fluorescence was investigated in maize and barley leaves. In the chilling-sensitive maize, delayed fluorescence at steady-state level showed a maximum near the temperature at which thylakoid membrane lipids undergo a phase transition as revealed by differential scanning calorimetry measurements. In the chilling-resistant barley, no phase transition was detected above 0°C and the delayed light emission varied in a monotonic fashion. It was shown that measurements of delayed luminescence intensity in vivo can provide a rapid and sensitive method for detecting the phase change of membrane lipids in intact leaves of chilling-sensitive plant species such as tomato, cotton, cucumber, castor bean or avocado. In contrast, the use of steady-state prompt chlorophyll fluorescence as an indicator of membrane fluidity change was not successful.  相似文献   

2.
Murata N  Yamaya J 《Plant physiology》1984,74(4):1016-1024
Seven major lipid classes were isolated from leaves of chilling-sensitive and chilling-resistant plants, and the temperature-dependent phase behaviors of their aqueous dispersions were studied by a fluorescence polarization method using trans-parinaric acid and its methyl ester. Phosphatidylglycerols from the chilling-sensitive plants went from the liquid crystalline state into the phase separation state at about 30°C in 100 mm NaCl and at about 40°C in 5 mm MgCl2. In contrast, phosphatidylglycerols from the chilling-resistant plants went into the phase separation state at a much lower temperature. The other classes of lipids remained in the liquid crystalline state at all temperatures between 5°C and 40°C regardless of the chilling sensitivity of the plants, except sulfoquinovosyl diacylglycerol from sponge cucumber in which phase separation seemed to begin at about 15°C. Compositions and positional distributions of fatty acids of the lipids suggest that the phosphatidylglycerols from the chilling-sensitive plants, but no other lipids, contained large proportions of molecular species which undergo phase transition at room temperature or above. The thermotropic phase behaviors and the fatty acid compositions suggest that, among the major lipid classes from leaves of the chilling-sensitive plants, only phosphatidylglycerol can induce a phase transition. Since a major part of this lipid in leaves originates from the chloroplasts, phase transition probably occurs in the chloroplast membranes.  相似文献   

3.
Raison JK  Orr GR 《Plant physiology》1986,81(3):807-811
The thermal response of mitochondrial polar lipids from a variety of chilling-sensitive and chilling-insensitive plants was determined by differential scanning calorimetry. A phase transition was observed at 15°C for mitochondria from soybeam (Glycine max. cv Davis) hypocotyl, at 16°C for tomato (Lycopersicon esculentum cv Flora-Dade and cv Grosse Lisse) fruit, at 15°C for cucumber (Cucumus sativus L.) fruit, at 14°C for mung bean (Vigna radiata var Berken) hypocotyl, and at 15°C for sweet potato (Ipomea batatas L.) roots. The transition temperature was not significantly altered by the scan rate and was reversible. Changes in the temperature coefficient of motion for a spin label, intercalated with the polar lipids, occurred at a temperature slightly below that of the phase transition, indicating that the polar lipids phase separate below the transition. No phase transition was observed for mitochondrial polar lipids from barley (Hordeum vulgare) roots, wheat (Triticum aestivum L. cv Falcon) roots, and Jerusalem artichoke (Helianthus tuberosus L.) tubers. The results show that a phase change occurs in the membrane lipids of mitochondria a few degrees above the temperature below which chilling injury is evident in the sensitive species. Thus they are consistent with the hypothesis that sensitivity to chilling injury is related to a temperature-induced alteration in the structure of cell membranes.  相似文献   

4.
5.
Sucrose-gradient purified mitochondria, glyoxysomes, and proplastids from germinating castor bean (Ricinus communis L.) endosperm were examined by electron-spin resonance spectroscopy. A temperature-induced phase change was demonstrated in all of these organelles, their derivative membranes, and in micelles formed from the membrane phospholipids. The apparent transition temperature of the membrane lipids varied slightly between the samples, but in all cases, fell within the temperature range around 10 C where physiological and biochemical changes in the response to temperature for most chilling-sensitive plants occur.  相似文献   

6.
1. The delayed fluorescence of chlorophyll a was measured with a phosphoroscope by changing the temperature in a range of room temperatures in intact cells of blue-green algae, Anacystis nidulans, two strains of Anabaena variabilis and Plectonema boryanum, and other kinds of algae, Cyanidium caldarium and Chlorella pyrenoidosa. The induction of delayed fluorescence remarkably depended on the temperature of measurment. Nevertheless, the induction pattern was characterized by three levels of intensity; the initial rise level at the onset of excitation light, the maximum level after a period of excitation and the steady-state level after 10 min of excitation. 2. In A. nidulans and a strain of A. variabilis grown at various temperatures, close relationship was found between the phase transition of membrane lipids and the initial rise and the steady-state levels of delayed fluorescence. The initial rise level showed the maximum at the temperature of phase transition between the liquid crystalline and the mixed solid-liquid crystalline states, The steady-state levels showed a remarkable change from a high in the liquid crystalline state to a low level in the mixed solid-liquid crystalline state. 3. The millisecond decay kinetics of the delayed fluorescence measured at the steady-state level in A. nidulans grown at 38 degrees C consisted of two components with different decay rates. The half-decay time of the fast component was about 0.17 ms and was constant throughout the temperature range of measurement. The half decay time of slow component ranged from 0.6 to 1.5 ms, depending on the temperature of measurment.  相似文献   

7.
8.
The effects of exposure to low temperature on photosynthesis and protein phosphorylation in chilling-sensitive and cold-tolerant plant species were compared. Chilling temperatures resulted in light-dependent loss of photosynthetic electron transport in chilling-sensitive rice (Oryza sativa L.) but not in cold-tolerant barley (Hordeum vulgare L.). Brief exposure to chilling temperatures (0-15°C, 10 min) did not cause a significant difference in photosynthetic O2 evolution capacity in vivo between rice and barley. Analysis of in vivo chlorophyll fluorescence in chilling-sensitive rice suggests that low temperatures cause an increased reduction of the plastoquinone pool that could result in photoinhibitory damage to the photosystem II reaction centers. Analysis of 32P incorporation into thylakoid proteins both in vivo and in vitro demonstrated that chilling temperature inhibited protein phosphorylation in rice, but not in barley. Low temperature (77 K) fluorescence analysis of isolated thylakoid membranes indicated that state I to state II transitions occurred in barley, but not in rice subjected to chilling temperatures. These observations suggest that protein phosphorylation may play an important role in protection against photoinhibition caused by exposure to chilling temperatures.  相似文献   

9.
Many studies have shown that membrane lipids of chilling-sensitive plants begin lateral phase separation (i.e. a minor component begins freezing) at chilling temperatures and that chilling-sensitive plants are often of tropical origin. We tested the hypothesis that membranes of tropical plants begin lateral phase separation at chilling temperatures, and that plants lower the temperature of lateral phase separation as they invade cooler habitats. To do so we studied plant species in one family confined to the tropics (Piperaceae) and in three families with both tropical and temperate representatives (Fabaceae [Leguminosae], Malvaceae, and Solanaceae). We determined lateral phase separation temperatures by measuring the temperature dependence of fluorescence from trans-parinaric acid inserted into liposomes prepared from isolated membrane phospholipids. In all families we detected lateral phase separations at significantly higher temperatures, on average, in species of tropical origin. To test for associated physiological effects we measured the temperature dependence of delayed light emission (DLE) by discs cut from the same leaves used for lipid analysis. We found that the temperature of maximum DLE upon chilling was strongly correlated with lateral phase separation temperatures, but was on average approximately 4°C lower. We also tested the hypothesis that photosystem II (PSII) (the most thermolabile component of photosynthesis) of tropical plants tolerates higher temperatures than PSII of temperate plants, using DLE and Fo chlorophyll fluorescence upon heating to measure the temperature at which PSII thermally denatured. We found little difference between the two groups in PSII denaturation temperature. We also found that the temperature of maximum DLA upon heating was not significantly different from the critical temperature for Fo fluorescence. Our results indicate that plants lowered their membrane freezing temperatures as they radiated from their tropical origins. One interpretation is that the tendency for membranes to begin freezing at chilling temperatures is the primitive condition, which plants corrected as they invaded colder habitats. An alternative is that membranes which freeze at temperatures only slightly lower than the minimum growth temperature confer an advantage.  相似文献   

10.
Nolan WG  Smillie RM 《Plant physiology》1977,59(6):1141-1145
The effect of temperature on Hill activity has been compared in chilling-sensitive and chilling-resistant plants. The Arrhenius activation energy (Ea) for the photoreduction of 2,6-dichlorophenolindophenol by chloroplasts isolated from two chilling-sensitive plants, mung bean (Vigna radiata L. var. Mungo) and maize (Zea mays L. cv. PX 616), increased at low temperatures, below 17 C for mung bean and below 11 C for maize. However, the Ea for this reaction in pea (Pisum sativum L. cv. Massay Gem), a chilling-resistant plant, likewise increased at temperatures below 14 C. A second change in Ea occurred at higher temperatures. The Ea decreased above about 28 C for mung bean, 30 C for maize, and 25 C for pea. At temperatures approaching 40 C, thermal inactivation of Hill activity occurred. These results, when taken together with previous results obtained with the chilling-resistant plant barley, indicate that chloroplasts from both chilling-sensitive and chilling-resistant plants can undergo a change in chloroplast membrane activity at low temperatures above freezing and that the presence of such a change in chloroplast membranes is not necessarily correlated with chilling sensitivity.  相似文献   

11.
Mitochondrial oxidative activity and membrane lipid structure of two wheat (Triticum aestivum L.) cultivars were measured as a function of temperature. The Arrhenius activation energy for the oxidation of both succinate and α-ketoglutarate was constant over the temperature range of 3 to 27 C. The activation energy for succinate-cytochrome c oxidoreductase activity was also constant over the same temperature range. The concentration of mitochondria in the reaction, the degree of initial inhibition of state 3 respiration, and the time after isolation of mitochondria were each shown to be capable of causing a disproportionate decrease in the rate of oxidation at low temperatures which resulted in an apparent increase in the activation energy of oxidative activity. Using three spin-labeling techniques, wheat membrane lipids were shown to undergo phase changes at about 0 C and 30 C. It is concluded that the membrane lipids of wheat, a chillingresistant plant, undergo a phase transition similar to the transition observed in the membrane lipids of chilling-sensitive plants. For wheat, however, the transition is initiated at a lower temperature and extends over a wider temperature range.  相似文献   

12.
This paper describes the utilization of a portable solid state device for the simultaneous measurement of prompt and delayed fluorescence transients in leaves from a variety of species subjected to temperature lowering. The induction transients of the two phenomena were not identical as the peak in prompt fluorescence yield always preceded that of delayed fluorescence. Temperature lowering delayed the occurrence of peak fluorescence, increased prompt fluorescence yield, decreased delayed fluorescence yield, and caused the occurrence of a new, more rapid delayed fluorescence transient. Leaves from all species had qualitatively the same type of induction curves although the response to temperature differed between species. The delayed fluorescence yield of chill-sensitive species was reduced to a greater extent than that of chill-insensitive species. Cold hardening leaf material did not greatly change the fluorescence response to temperature lowering. Arrhenius plots showed a linear relationship between delayed fluorescence yield and temperature. There were no breaks that would suggest membrane lipid phase changes. The data indicate that thylakoid membranes of chill-sensitive species are less capable of maintaining a light-induced high energy state at low temperatures than are thylakoid membranes of chill-resistant species.  相似文献   

13.
Photoinhibition resulting from exposure at 7°C to a moderate photon flux density (300 micromoles per square meter per second, 400-700 nanometers) for 20 hours was measured in leaves of annual crops differing widely in chilling tolerance. The incidence of photoinhibition, determined as the decrease in the ratio of induced to total chlorophyll fluorescence emission at 693 nanometers (Fv/Fmax) measured at 77 Kelvin, was not confined to chilling-sensitive species. The extent of photoinhibition in leaves of all chilling-resistant plants tested (barley [Hordeum vulgare L.], broad bean [Vicia faba L.], pea [Pisum sativum L.], and wheat [Triticum aestivum L.]) was about half of that measured in chilling-sensitive plants (bean [Phaseolus vulgaris L.], cucumber [Cucumis sativus L.], lablab [Lablab purpureus L.], maize [Zea mays L.], pearl millet [Pennisetum typhoides (Burm. f.) Stapf & Hubbard], pigeon pea [Cajanus cajun (L.) Millsp.], sesame [Sesamum indicum L.], sorghum [Sorghum bicolor L. Moench], and tomato [Lycopersicon esculentum Mill.]). Rice (Oryza sativa L.) leaves of the indica type were more susceptible to photoinhibition at 7°C than leaves of the japonica type. Photoinhibition was dependent both on temperature and light, increasing nonlinearly with decreasing temperature and linearly with increasing light intensity. In contrast to photoinhibition during chilling, large differences, up to 166-fold, were found in the relative susceptibility of the different species to chilling injury in the dark. It was concluded that chilling temperatures increased the likelihood of photoinhibition in leaves of both chilling-sensitive and -resistant plants. Further, while the photoinhibition during chilling generally occurred more rapidly in chilling-sensitive plants, this was not related directly to chilling sensitivity.  相似文献   

14.
The phase behaviour of leaf polar lipids from three plants, varying in their sensitivity to chilling, was investigated by differential scanning calorimetry. For the lipids from mung bean (Vigna radiata L. var. Berken), a chilling-sensitive plant, a transition exotherm was detected beginning at 10 ± 2°C. No exotherm was evident above 0°C with polar lipids from wheat (Triticum aestivum cv. Falcon) or pea (Pisum sativum cv. Massey Gem), plants which are insensitive to chilling. The enthalpy for the transition in the mung bean polar lipids indicated that only about 7% w/w of the lipid was in the gel phase at ?8°C. The thermal transition of the mung bean lipids was mimicked by wheat and pea polar lipids after the addition of 1 to 2% w/w of a relatively high melting-point lipid such as dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylglycerol or dimyristoylphosphatidylcholine. Analysis of the polar lipids from the three plants showed that a dipalmitoylphosphatidylglycerol was present in mung bean (1.7% w/w) and pea (0.3% w/w) but undetected in wheat, indicating that the transition exotherm temperature of 10°C in mung bean, 0°C in pea and about ?3°C in wheat correlates with the proportion of the high melting-point disaturated component in the polar lipids. The results indicate that the transition exotherm, observed at temperatures above 0°C in the membranes of chilling-sensitive plants, could be induced by small amounts of high melting-point lipids and involves only a small proportion of the membrane polar lipids.  相似文献   

15.
Oxygen evolution and chlorophyll fluorescence were measured in cold-hardened and unhardened leaves of barley ( Hordeum vulgare L. cv. Asa) during the induction period of photosynthesis. The lag phase of light-saturated photosynthesis was increased and steady-state rates of photosynthesis were higher in cold-hardened than in unhardened barley leaves. Fluorescence was quenched more rapidly during the first minutes of induction in hardened than unhardened leaves, largely because of greater energy-dependent quenching (qE). Also, slow fluorescence transients through the M peak were delayed and less pronounced in cold-hardened than in unhardened leaves. Based upon the combined fluorescence and oxygen evolution data it was concluded that cold-hardening delayed light activation of the energy consuming carbon reduction cycle, thereby delaying the use of ATP and NADPH formed in the light reaction. Measurements of oxygen evolution and fluorescence kinetics during photosynthetic induction under oxygenic and anoxygenic conditions suggest that oxygen photoreduction is important for additional ATP generation during both the onset of photosynthetic carbon assimilation and during steady-state photosynthesis.  相似文献   

16.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by FR, the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for FR to decrease by 50% in leaves at 0°C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, FR decreased very slowly in cucumber leaves at 10°C or in chilling-tolerant cabbage leaves at 0°C. Long-term changes in FR of barley, wheat, and rye leaves kept at 0°C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0°C under N2. Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in FR than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in FR in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured.  相似文献   

18.
The light-induced rise in chlorophyll fluorescence and the subsequent decay of fluorescence in darkness were measured in barley and maize leaves exposed to heat treatment. The redox conversions of the photosystem I primary donor P700, induced by far-red light, were also monitored from the absorbance changes at 830 nm. After heating of leaves at temperatures above 40°C, the ratio of variable and maximum fluorescence decreased for leaves of both plant species, indicating the inhibition of photosystem II (PSII) activity. A twofold reduction of this ratio in barley and maize leaves was observed after heating at 45.3 and 48.1°C, respectively, which suggests the higher functional resistance of PSII in maize. The amplitude of the slow phase in the dark relaxation of variable fluorescence did not change after the treatment of barley and maize leaves at temperatures up to 48°C. In leaves treated at 42 and 46°C, the slow phase of dark relaxation deviated from an exponential curve. The relaxation kinetics included a temporary increase in fluorescence to a peak about 1 s after turning off the actinic light. Unlike the slow component, the fast and intermediate phases in the dark relaxation of variable fluorescence disappeared fully or partly after the treatment of leaves at 46°C. The photooxidation of P700 in heat-treated leaves was saturated at much higher irradiances of far-red light than in untreated leaves. At the same time, the dark reduction of P700+ was substantially accelerated after heat treatment. The data provide evidence that the heating of leaves stimulated the alternative pathways of electron transport, i.e., cyclic transport around photosystem I and/or the donation of electrons to the plastoquinone pool from the reduced compounds located in the chloroplast stroma. The rate of alternative electron transport after the heat treatment was higher in maize leaves than in barley leaves. It is supposed that the stimulation of alternative electron transport, associated with proton pumping into the thylakoid, represents a protective mechanism that prevents the photoinhibition of PSII in leaves upon a strong suppression of linear electron transport in chloroplasts exposed to heat treatment.  相似文献   

19.
The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

20.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号