首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40 °C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported “living fossil”.  相似文献   

2.
The invasive garden ant, Lasius neglectus, is a dominant species due to its capacity to form large supercolonies. This species was assumed to possess a wide thermal niche since it is able to adapt to cold climates, which is a factor that boosted its rapid expansion from south to many central-northern European Countries. However, the effect of variations in environmental temperatures on its competitive ability against other species has still not been investigated. In this paper, we analyzed the change in survival ability of Lasius neglectus during encounters with two Mediterranean dominant ants (Crematogaster scutellaris and Tapinoma nigerrimum) at four different temperatures (15, 20, 25 and 30 °C). Firstly, control tests were performed to provide the baseline survival ability of the three species at different temperatures. Secondly, competition tests were carried out at the same temperatures. Lasius neglectus survival was negatively affected by high temperature (30 °C) in control tests, and this impairment was much more pronounced in competition tests. On the contrary, the two opponent species were only marginally affected by temperatures in control tests. Crematogaster scutellaris was a better competitor than L. neglectus, particularly at high temperatures. Tapinoma nigerrimum was a weaker competitor and was always outcompeted by L. neglectus, particularly at low temperatures. This result could suggest that L. neglectus is at a disadvantage during interspecific encounters when temperatures are high and that the predicted future increase in environmental temperatures may potentially enhance this handicap.  相似文献   

3.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

4.
Freshwater sponges are important to ecosystem functioning; however, information about their biogeography and interspecific variation is fragmentary, limiting our ability to assess their role. Although the specific epithets of two common species suggest that sponges found in lentic habitats are Spongilla lacustris, and those found in lotic habitats are Ephydatia fluviatilis, the number of sponge species in the UK is unresolved. We sampled sponges in a variety of habitats and used both morphological and molecular (D3 domain of 28S rDNA) methods to identify six species, including the first record of Trochospongilla horrida. We contrasted species in terms of their environmental tolerances, habitats, and variation, and we expanded on the limited information available about the geographic distributions of these sponges. In our study, most sponge species colonized a variety of substrates, but exhibited different distributions. The most widespread sponge, S. lacustris, was present at lower mean water temperatures and was more often located above a latitude of 55°N. Ephydatia fluviatilis was the most common species in rivers, but was also located in lentic habitats. Salinity in anthropogenic habitats was not a significant factor for the presence of E. fluviatilis or the more patchily distributed species Eunapius fragilis. Instead, these species occurred more frequently at sites with negative oxidation–reduction potential. Sponge biodiversity may be affected by substrate availability in anthropogenic habitats, invasive species, and improved ability to recognize sponge taxa. Crucially, we provide foundation data as a prerequisite for future ecological evaluation.  相似文献   

5.
The relationship between water temperature, growth rate, and otolith isotopic ratios was measured for juvenile plaice (Pleuronectes platessa) reared at two temperatures (11 and 17°C) and two feeding regimes (1 and 3 prey items·ml?1). The otolith isotope ratios in individual fish ranged from ?2 to ?4 for carbon isotope ratios (δ13C) and from 0.2 to 1.9 for oxygen isotope ratios (δ18O). The otolith oxygen isotope ratios were significantly affected by water temperature, but not by feeding level, and there were no significant synergistic effects. The fractionation of oxygen isotopes during otolith growth was independent of individual growth rate. Carbon isotope ratios were not significantly affected by food ration or water temperature, but were related to fish growth rate. The carbon isotope ratios were negatively correlated with fish length in the colder water treatments, and tended to increase with fish length in the warm water treatments. The laboratory-determined relationship between otolith oxygen isotope ratio and water temperature was applied to individuals of five species (plaice, cod, whiting, haddock, gurnard) collected in a single trawl sample. The otolith derived temperatures often overestimated measured water temperatures. The difference between real and estimated water temperatures varied between species, and the closest fit was for field-caught plaice.  相似文献   

6.
(1) The paper reports results of laboratory studies on growth rates at elevated temperatures of two diatoms (Chaetoceros wighami and Amphora coffeaeformis) isolated from the intake and outfall sites of a coastal power station on the east coast of India. (2) Temperature exposures consisted of acute and chronic treatments to simulate condenser transit and prolonged thermal plume entrainment. (3) The results showed that the various temperature zones presented by cooling water circuit of the power station would permit diatom growth, with growth rates that are marginally different form those at average ambient sea temperature. (4) Fundamental differences in the response of different diatom species to temperature stress result in the abundance of the more tolerant species such as A. coffeaeformis which dominate in an elevated temperature zone, such as that offered by the discharge canal of the power station.  相似文献   

7.
Light Microscopy and Cryo-Scanning Electron Microscopy techniques were used to analyse the interaction betweenAlternaria alternata andNigrospora oryzae at different temperatures (15 and 25°C) and water activities (0.85, 0.90, 0.95, 0.98 and 0.995). Each interaction was given a numerical value to obtain the Index of Dominance (I) based on the variations observed in fungus growth when the environmental conditions changed. For a better understanding of the process, each species was studied individually anysing the effects of abiotic and biotic factors on their growth. In the tests performed, none of the two fungus species analysed was dominant over the other since both species presented mutual intermingling both in Rice Extract agar and in rice grains and no interaction between hyphae and the reproductive structures was observed.Alternaria alternata andN. oryzae presented their highest growth both individually and dually at 0.995 water activity and 25°CAlternaria alternata sporulated at all temperatures and water activity values, except at 0.85, whereasN. oryzae sporulated only at 0.98 and 0.995 at 25°C, presenting no changes as the strains interacted. Finally, temperature and water activity significantly affected fungal growth.  相似文献   

8.
Global warming may affect snail–periphyton–macrophyte relationships in lakes with implications also for water clarity. We conducted a 40-day aquaria experiment to elucidate the response of submerged macrophytes and periphyton on real and artificial plants to elevated temperatures (3°C) under eutrophic conditions, with and without snails present. With snails, the biomass and length of Vallisneria spinulosa leaves increased more at the high temperature, and at both temperatures growth was higher than in absence of snails. The biomass of periphyton on V. spinulosa as well as on artificial plants was higher at the highest temperature in the absence but not in the presence of snails. The biomass of Potamogeton crispus (in a decaying state) declined in all treatments and was not affected by temperature or snails. While total snail biomass did not differ between temperatures, lower abundance of adults (size >1 cm) was observed at the high temperatures. We conclude that the effect of elevated temperature on the snail–periphyton–macrophyte relationship in summer differs among macrophyte species in active growth or senescent species in subtropical lakes and that snails, when abundant, improve the chances of maintaining actively growing macrophytes under eutrophic conditions, and more so in a warmer future with potentially denser growth of periphyton.  相似文献   

9.
For a fish to thrive, the gut must function efficiently. This is achieved through a range of processes, including controlled patterns of gut motility and modifications in gut blood flow. The knowledge of how gut functions in fish are affected by environmental temperature is sparse, and in order to understand how changes in climate may affect fish populations, we need to understand how gut blood flow and gut motility are affected by changes in temperature. By simultaneous recording of gut blood flow, gut motility, cardiac output, heart rate and cardiac stroke volume, in vivo at 4, 9 and 14 °C, the acute thermal sensitivity of a thermal generalist (shorthorn sculpin Myoxocephalu scorpius) was compared to the more strictly Arctic species (Arctic sculpin M. scorpioides). Temperature effects on gut motility were further explored in vitro, using isolated smooth muscles. Elevated water temperatures increased gut blood flow and contractile activity. Contraction frequency increased nearly threefold and gut blood flow almost doubled with the 10 °C increase. Both cardiac output and heart rate increased with temperature, while cardiac stroke volume decreased. The cholinergic agonist carbachol was most potent on smooth muscles at 9 °C. There were no differences between the two species, suggesting that the gastrointestinal and cardiovascular systems of Arctic sculpin, although a more pronounced Arctic species, have similar abilities to cope with acute fluctuations in water temperature as shorthorn sculpin. The impact of increased gut activity at higher temperatures needs further investigation before the effects of climate change can be predicted.  相似文献   

10.
The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, “safety”, the snakes from water lost even at temperatures higher than those of their usual habitat.  相似文献   

11.
Abstract We studied the germination of seeds of Carrichtera annua L. from a single cohort, stored in the field for up to 18 months, when retrieved at different times and subject to different combinations of temperature and water availability. Germination was affected by season of retrieval, and temperature and water availability in a complex interactive way. Germination rates were lowest when seeds were retrieved during summer or spring, but seeds germinated readily when retrieved during autumn and winter, if exposed to temperatures simulating autumn or winter conditions, and provided water equivalent to at least 50% field capacity. High temperatures and low water availability reduced germination substantially. The results indicate that this species has a combination of cyclic dormancy and germination requirements that minimizes the risk of germination during periods when the risk of prereproductive mortality is high. Given the short life of the seeds of this species, these mechanisms may be essential for the persistence of the species in the highly unpredictable arid lands of southern Australia.  相似文献   

12.
D J Murphy 《Cryobiology》1979,16(3):292-300
The differences in the lethal freezing temperatures of the foot muscles of the marine snails used in this study were related to the vertical distributions of the snails on the shore. The muscles of the subtidal species Thais lapillus and Nassarius obsoletus were injured at temperatures that were significantly higher than those of the muscles of the intertidal species Littorina obtusata, Littorina littorea, and Littorina saxatilis. The lethal freezing temperatures also varied among the intertidal species. The foot muscle of the high-intertidal species, L. saxatilis, was injured at a significantly lower temperature than the foot muscles of the low-intertidal species L. obtusata.Calorimetry was used to show that the differences in the lethal freezing temperatures between the subtidal and intertidal snails were related to the amounts of tissue ice formed. The ability of the muscles of the intertidal snails to tolerate lower subfreezing temperatures was associated with an increased tolerance to greater quantities of tissue ice. In contrast, the differences in the lethal freezing temperatures among the intertidal species were independent of the amounts of tissue ice formed. The percentage of water frozen in the muscles of these snails at their respective lethal freezing temperatures were not significantly different and were equal to 82%. Thus, the physiological mechanism responsible for the differences in the lethal freezing temperatures of the muscles of the intertidal snails is associated with an increased tolerance to a factor other than the amounts of tissue ice formed.  相似文献   

13.
The occurrence of emerging infectious diseases in wildlife populations is increasing, and changes in environmental conditions have been hypothesized as a potential driver. For example, warmer ambient temperatures might favor pathogens by providing more ideal conditions for propagation or by stressing hosts. Our objective was to determine if water temperature played a role in the pathogenicity of an emerging pathogen (ranavirus) that infects ectothermic vertebrate species. We exposed larvae of four amphibian species to a Frog Virus 3 (FV3)-like ranavirus at two temperatures (10 and 25°C). We found that FV3 copies in tissues and mortality due to ranaviral disease were greater at 25°C than at 10°C for all species. In a second experiment with wood frogs (Lithobates sylvaticus), we found that a 2°C change (10 vs. 12°C) affected ranaviral disease outcomes, with greater infection and mortality at 12°C. There was evidence that 10°C stressed Cope’s gray tree frog (Hyla chrysoscelis) larvae, which is a species that breeds during summer—all individuals died at this temperature, but only 10% tested positive for FV3 infection. The greater pathogenicity of FV3 at 25°C might be related to faster viral replication, which in vitro studies have reported previously. Colder temperatures also may decrease systemic infection by reducing blood circulation and the proportion of phagocytes, which are known to disseminate FV3 through the body. Collectively, our results indicate that water temperature during larval development may play a role in the emergence of ranaviruses.  相似文献   

14.
Temperature loggers were attached to the carapace of green turtles (Chelonia mydas) at Ascension Island and Cyprus and to loggerhead turtles (Caretta caretta) at Cyprus, in order to record the ambient temperature experienced by individuals during the internesting interval, i.e. the period between consecutive clutches being laid. Internesting intervals were relatively short (10–14 days) and mean ambient temperatures relatively warm (27–28°C), compared to previous observations for these species nesting in Japan, although a single internesting interval versus temperature relationship described all the data for these two species from the different areas. The implication is that water temperature has both a common and a profound effect on the length of the internesting interval for these two species: internesting intervals are shorter when the water is warmer.  相似文献   

15.
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.  相似文献   

16.
《Aquatic Botany》1986,24(2):185-197
The physiological responses to temperature were investigated in two coexisting seagrasses, Zostera marina L. and Ruppia maritima L. sensu lato from the lower Chesapeake Bay, Virginia. Seven plant collections were made from March to July, 1983 at ambient temperatures of 8–30°C. Both species maintained relatively constant fresh: dry weight ratios and chlorophyll a:b ratios over the five-month period. Total chlorophyll content remained constant in Z. marina while that of R. maritima doubled from March to July. Pmax values for both species increased with increasing temperature and declined at temperatures above 19 and 23°C (Z. marina and R. maritima, respectively). Pmax values were significantly higher for R. maritima compared to Z. marina at temperatures above 19°C. Both short-term (laboratory) and long-term (in situ) responses to temperature regimes affected estimates of the photosynthetic capacity of both species. Thus, temperature histories of experimental material should be carefully considered when interpreting temperature effects on photosynthesis. This study provides support of the hypothesis that seasonal community dynamics of Z. marina and R. maritima in Chesapeake Bay are regulated in part by different responses to light and temperature.  相似文献   

17.
Embryonation of Thelastoma bulhoesi was monitored at eight temperatures between 0 and 35 C. Cell division did not occur below 15 C or at 35 C. Development was most rapid at 25 and 36 C. The effect of temperature on the rate of embryological development of T. bulhoesi at different stages was measured using the temperature coefficient, Q₁₀. The developmental temperature response curve obtained for T. bulhoesi was similar to enzyme temperature response curves. Our evidence supports the thesis that nematode embryonation, as affected by temperature, varies between species and between stages of development.  相似文献   

18.
A total 14 streams located in the Tatra Mts (Slovakia) were investigated. The studied river basins have different deforestation range (0–45.5%) influenced by windstorm. Daily and annual water temperature suggested that in streams overflowing through the area deforested by windstorm the temperature was higher than in selected non-disturbed streams. Higher average nutrient concentrations in samples from these streams are connected with nutrient mobilization from disturbed forest soils after the windstorm. Most of the damaged streams have higher trophic status, including POM and biofilms. The growth of the most abundant larvae increases with deforestation. Growth of species Leuctra rauscheri, Protonemura Montana, and Perlodes intricatus correlates with the sum of daily temperatures over a given time interval. Growth of species Brachyptera seticornis, Leuctra autumnalis and Isoperla sudetica are affected by stream trophy.  相似文献   

19.
Sporadic mass mortality events of Mediterranean sponges following periods of anomalously high temperatures or longer than usual stratification of the seawater column (i.e. low food availability) suggest that these animals are sensitive to environmental stresses. The Mediterranean sponges Ircinia fasciculata and I. oros harbor distinct, species-specific bacterial communities that are highly stable over time and space but little is known about how anomalous environmental conditions affect the structure of the resident bacterial communities. Here, we monitored the bacterial communities in I. fasciculata (largely affected by mass mortalities) and I. oros (overall unaffected) maintained in aquaria during 3 weeks under 4 treatments that mimicked realistic stress pressures: control conditions (13°C, unfiltered seawater), low food availability (13°C, 0.1 µm-filtered seawater), elevated temperatures (25°C, unfiltered seawater), and a combination of the 2 stressors (25°C, 0.1 µm-filtered seawater). Bacterial community structure was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA gene sequences and transmission electron microscopy (TEM). As I. fasciculata harbors cyanobacteria, we also measured chlorophyll a (chl a) levels in this species. Multivariate analysis revealed no significant differences in bacterial T-RFLP profiles among treatments for either host sponge species, indicating no effect of high temperatures and food shortage on symbiont community structure. In I. fasciculata, chl a content did not significantly differ among treatments although TEM micrographs revealed some cyanobacteria cells undergoing degradation when exposed to both elevated temperature and food shortage conditions. Arguably, longer-term treatments (months) could have eventually affected bacterial community structure. However, we evidenced no appreciable decay of the symbiotic community in response to medium-term (3 weeks) environmental anomalies purported to cause the recurrent sponge mortality episodes. Thus, changes in symbiont structure are not likely the proximate cause for these reported mortality events.  相似文献   

20.
Competition or facilitation characterises intra- and interspecific interactions within communities of species that utilize the same resources. Temperature is an important factor influencing those interactions and eventual outcomes. The noctuid stemborers, Busseola fusca and Sesamia calamistis and the crambid Chilo partellus attack maize in sub-Saharan Africa. They often occur as a community of interacting species in the same field and plant at all elevations. The influence of temperature on the intra- and interspecific interactions among larvae of these species, was studied using potted maize plants exposed to varying temperatures in a greenhouse and artificial stems kept at different constant temperatures (15°C, 20°C, 25°C and 30°C) in an incubator. The experiments involved single- and multi-species infestation treatments. Survival and relative growth rates of each species were assessed. Both intra- and interspecific competitions were observed among all three species. Interspecific competition was stronger between the noctuids and the crambid than between the two noctuids. Temperature affected both survival and relative growth rates of the three species. Particularly at high temperatures, C. partellus was superior in interspecific interactions shown by higher larval survival and relative growth rates. In contrast, low temperatures favoured survival of B. fusca and S. calamistis but affected the relative growth rates of all three species. Survival and relative growth rates of B. fusca and S. calamistis in interspecific interactions did not differ significantly across temperatures. Temperature increase caused by future climate change is likely to confer an advantage on C. partellus over the noctuids in the utilization of resources (crops).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号