首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrial emissions of SO2 and NOx, resulting in the formation and deposition of sulfuric and nitric acids, affect the health of both terrestrial and aquatic ecosystems. Since the mid-late 20th century, legislation to control acid rain precursors in both Europe and the US has led to significant declines in both SO4–S and H+ in precipitation and streams. However, several authors noted that declines in streamwater SO4–S did not result in stoichiometric reductions in stream H+, and suggested that observed reductions in base cation inputs in precipitation could lessen the effect of air pollution control on improving stream pH. We examined long-term precipitation chemistry (1978–2010) from nearly 30 sites in the US and Europe that are variably affected by acid deposition and that have a variety of industrial and land-use histories to (1) quantify trends in SO4–S, H+, NH4–N, Ca, and NO3–N, (2) assess stoichiometry between H+ and SO4–S before and after 1990, and (3) examine regional synchrony of trends. We expected that although the overall efforts of developed countries to reduce air pollution and acid rain by the mid-late 20th century would tend to synchronize precipitation chemistry among regions, geographically varied patterns of fossil fuel use and pollution control measures would produce important asynchronies among European countries and the United States. We also expected that control of particulate versus gaseous emission, along with trends in NH3 emissions, would be the two most significant factors affecting the stoichiometry between SO4–S and H+. Relationships among H+, SO4–S, NH4–N, and cations differed markedly between the US and Europe. Controlling for SO4–S levels, H+ in precipitation was significantly lower in Europe than in the US, because (1) alkaline dust loading from the Sahara/Sahel was greater in Europe than the US, and (2) emission of NH3, which neutralizes acidity upon conversion to NH4 +, is generally significantly higher in Europe than in the US. Trends in SO4–S and H+ in precipitation were close to stoichometric in the US throughout the period of record, but not in Europe, especially eastern Europe. Ca in precipitation declined significantly before, but not after 1990 in most of the US, but Ca declined in eastern Europe even after 1990. SO4–S in precipitation was only weakly related to fossil fuel consumption. The stoichiometry of SO4–S and H+ may be explained in part by emission controls, which varied over time and among regions. Control of particulate emissions reduces alkaline particles that neutralize acid precursors as well as S-containing particulates, reducing SO4–S and Ca more steeply than H+, consistent with trends in the northeastern US and Europe before 1990. In contrast, control of gaseous SO2 emissions results in a stoichiometric relationship between SO4–S and H+, consistent with trends in the US and many western European countries, especially after 1991. However, in many European countries, declining NH3 emissions contributed to the lack of stoichiometry between SO4–S and H+.Recent reductions in NOx emissions have also contributed to declines in H+ in precipitation. Future changes in precipitation acidity are likely to depend on multiple factors including trends in NOx and NH3 emission controls, naturally occurring dust, and fossil fuel use, with significant implications for the health of both terrestrial and aquatic ecosystems.  相似文献   

2.
Biogeochemical responses to changing climate and atmospheric deposition were investigated using nitrogen (N) and sulfur (S) mass balances, including dry deposition and organic solutes in the Arbutus Lake watershed in the Adirondack Mountains, New York State. Long‐term monitoring of wet‐only precipitation (NADP/NTN, 1983–2001) and dry deposition (AIRMoN, 1990–2001) at sites adjacent to the watershed showed that concentrations of SO42? in precipitation, SO42? in particles,and SO2 vapor all declined substantially (P<0.005) in contrast to no marked temporal changes observed for most N constituents (NH4+ in precipitation, HNO3 vapor, and particulate NO3?), except for NO3? in precipitation, which showed a small decrease in the late 1990s. From 1983 to 2001, concentrations of SO42? in the lake outlet significantly decreased (?2.1 μeq L?1 yr?1, P<0.0001), whereas NO3? and dissolved organic N (DON) concentrations showed no consistent temporal trends. With the inclusion of dry deposition and DON fluxes into the mass balance, the retained portion of atmospheric N inputs within the main subcatchment increased from 37% to 60%. Sulfur outputs greatly exceeded inputs even with the inclusion of dry S deposition, while organic S flux represented another source of S output, implying substantial internal S sources. A significant relationship between the annual mean concentrations of SO42? in lake discharge and wet deposition over the last two decades (r=0.64, P<0.01) suggested a considerable influence of declining S deposition on surface water SO42? concentrations, despite substantial internal S sources. By contrast, interannual variations in both NO3? concentrations and fluxes in lake discharge were significantly related to year‐to‐year changes in air temperature and runoff. Snowmelt responses to winter temperature fluctuations were crucial in explaining large portions of interannual variations in watershed NO3? export during the months preceding spring snowmelt (especially, January–March). Distinctive response patterns of monthly mean concentrations of NO3? and DON in the major lake inlet to seasonal changes in air temperature also suggested climatic regulation of seasonal patterns in watershed release of both N forms. The sensitive response of N drainage losses to climatic variability might explain the synchronous patterns of decadal variations in watershed NO3? export across the northeastern USA.  相似文献   

3.
Dissolved nutrient inputs in bulk precipitation and outputs in streamwater were measured during 3 years of contrasting hydrological conditions in a 6.3-ha, grazed heathland watershed on schists in the Montseny mountains (NE Spain), drained by an intermittent stream. On average, 39% of the precipitation became streamflow. Bulk precipitation delivered positive net alkalinity (mean 0.22 keq/ha/yr), sulphate input was moderate (9.0 kg SO4-S/ha/yr), and the mean input of inorganic N was not exceptionally high (6.6 kg/ha/yr). Ion concentrations were relatively low in streamwater; SO4 2- was the dominant anion. Most concentrations in streamwater varied seasonally, with maxima in late summer or early autumn and minima in spring. This pattern probably resulted from increased availability of ions for leaching due to decomposition of organic matter and chemical weathering during the warm period. Nitrate concentrations were relatively high in winter and dropped sharply in early spring, probably because of biological uptake. Annual element outputs in streamwater varied between years and seemed to be controlled by both the amount of annual streamflow and its seasonal distribution. Annual inputs exceeded outputs for dissolved inorganic N. The watershed accumulated H+ and Ca2+, had net losses of Na+ and Mg2+, and was close to steady state for K+, SO4 2-, Cl- and alkalinity. The chloride budgets gave no evidence of substantial dry deposition in this system. The cationic denudation rate was negative (-0.14 keq/ha/yr) because Ca2+ retention was higher than net exports of Na+ and Mg2+ from silicate weathering. Low nutrient export and little production of alkalinity suggest that this watershed has a low buffering capacity.  相似文献   

4.
Peatlands are important to global carbon (C) sequestration and surface water acid–base status, both of which are affected by peatland alkalinity and acidity cycling. Relationships among sulfate (SO4 2?), nitrate (NO3 ?), organic acids (OA?), base cations (i.e., Ca2+, Mg2+, K+, and Na+), proton (H+) acidity, and bicarbonate (HCO3 ?) alkalinity were investigated in an intermediate fen peatland in northern Ontario during 2004 (an average precipitation year) and 2005 (a dry summer). Potential evapotranspiration was higher and the water table, groundwater input from the uplands, and runoff were lower during 2005. Net inputs of base cations, HCO3 ?, SO4 2?, and OA?, and to a lesser degree NO3 ?, were lower during the drier year, mainly due to lower groundwater transfer to the fen. Fen porewater HCO3 ? concentration and net output were also lower in the drier year, whereas Ca2+, Mg2+, and SO4 2? concentrations and net output were higher. During the climatically average year, N immobilization, carbonic acid (H2CO3) dissociation, and OA dissociation were equally important H+-producing reactions. Peat cation exchange accounted for 50% of the H+ sink, while SO4 2? reduction and denitrification accounted for an additional 20 and 25% of the H+ sink, respectively. During the dry year, S oxidation accounted for 55% of the H+ net production, while that for H2CO3 dissociation was 70% lower than that during the climatically average year. Peat cation exchange consumed three times the acidity, and accounted for 92% of the H+ consumption during the dry year compared to the climatically average year. This was consistent with a three-fold higher net base cation export from the fen during the dry year. Based on the study results, a conceptual model was developed that describes the role of acidity formation and its implications to intermediate fen acidification.  相似文献   

5.
Since 1987 we have studied weekly change in winter (December–April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65–85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO3, NH4+, dissolved inorganic nitrogen (DIN), and SO42−. Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO42− flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (CB), HCO3, and Cl concentrations declined with increased stream water discharge, K+, NO3, and SO42− remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO3 and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems.  相似文献   

6.
Fluxes of major ions and nutrients were measured in the watershed-lake ecosystem of a strongly acidified lake, Ple?né jezero (Ple?né Lake), in the Czech Republic in hydrological years from 2001 through 2005. The lake is situated in a Norway spruce forest and has a steep watershed between elevations of 1090 and 1378 m. The average water input and output from the ecosystem was 1372 mm and 1157 mm (37 L km?2 s?1), respectively, and the water residence time averaged 306 days. Despite ecosystem recovery from acidification occurring since the late 1980s, the Ple?né watershed was an average net source of 25 mmol SO 4 2? m?2 yr?1. Nitrogen saturation of the watershed caused low retention of the deposited inorganic N (< 44% on average) before 2004. Then, the watershed became a net source of 28–32 mmol m?2 yr?1 of inorganic N in the form of NO 3 ? due to climatic effects (a dry summer in 2003 and a cold winter in 2004) and forest dieback caused by a bark beetle attack in 2004. Nitrogen transformations and SO 4 2? release were the dominant terrestrial sources of H+ (72 and 49 mmol m?2 yr?1, respectively) and the watershed was a net source of 24 mmol H+ m?2 yr?1. Ionic composition of surface inlets showed seasonal variations, with the most pronounced changes in NO 3 ? , ionic Al (Ali), and DOC concentrations, while the composition of subsurface inlets was more stable. The in-lake biogeochemical processes reduced on average 59% of the incoming H+ (251 mmol H+ m?2 yr?1 on a lake-area basis). NO 3 ? assimilation and denitrification, photochemical and microbial decomposition of allochthonous organic acids, and SO 4 2? reduction in the sediments were the most important aquatic H+ consuming processes (358, 121, and 59 mmol H+ m?2 yr?1, respectively), while hydrolysis of Ali was the dominant in-lake H+ generating process (233 mmol H+ m?2 yr?1). Photochemical liberation from organic complexes was an additional in-lake source of Ali. The net in-lake retention or removal of total phosphorus, total nitrogen, and silica were on average 50%, 27%, and 23%, respectively. The lake was a net source of NH 4 + due to a cease in nitrification (pH < 5) and from NH 4 + production by dissimilation exceeding its removal by assimilation.  相似文献   

7.
Experimental acidification of a softwater lake to below pH 5 fundamentally changed the sulfur cycle and lowered internal alkalinity generation (IAG). Prior to reaching pH 4.5, the balance of sulfur reduction and oxidation reactions within the lake was in favour of reduction, and the lake was a net sink for sulfate. In the four years at pH 4.5 the balance of reduction and oxidation reactions was in favour of oxidation, and there was a net production of sulfate (SO4 2–) within the lake. Evidence indicating a decrease in net SO4 2– reduction at pH 4.5 was also obtained in an anthropogenically acidified lake that had been acidified for many decades. In both lakes, the decrease in net SO4 2– reduction appeared to be linked not to a simple inhibition of SO4 2– reduction but rather to changes in benthic ecosystem structure, especially the development of metaphytic filamentous green algae, which altered the balance between SO4 2– reduction and sulfur oxidation.At pH's above 4.5, net SO4 2– reduction was the major contributor to IAG in the experimental lake, as it is in many previously studied lakes at pH 5 and above. At pH 4.5, the change in net annual SO4 2– reduction (a decrease of 110%) resulted in a 38% decrease in total IAG. Because of the important role of net SO4 2– reduction in acid neutralization in softwater lakes, models for predicting acidification and recovery of lakes may need to be modified for lakes acidified to pH <5.  相似文献   

8.
Fluxes of major ions and nutrients were measured in the watershed-lake ecosystem of a strongly acidified lake, ?ertovo jezero (?ertovo Lake), in the 2001 through 2005 hydrological years. Water balance was estimated from precipitation and throughfall amounts, and measured outflow from the lake. The average water input into and outflow from the watershed-lake ecosystem was 1461 mm and 1271 mm (40 L km?2 s?1), respectively, and the water residence time in the lake averaged 662 days. The ecosystem has been recovering from acidification since the late 1980s. Still, however, ?ertovo watershed was an average net source of 23 mmol m?2 yr?1 of SO 4 2? . Nitrogen saturation of the watershed caused low retention of the deposited inorganic N (23% on average). After a dry summer in 2003 and a cold winter in 2004, the watershed became a net source of inorganic N (19 mmol m?2 yr?1). Nitrogen transformations and SO 4 2? release were the dominant terrestrial sources of H+ (81 and 47 mmol m?2 yr?1, respectively) and the watershed was a net source of 42 mmol H+ m?2 yr?1. Ionic composition of tributaries showed seasonal variations with the most pronounced changes in NO 3 ? , base cations, DOC, and ionic Al (Ali) concentrations. The in-lake biogeochemical processes reduced the incoming H+ by ~50% (i.e., neutralized on average 222 mmol H+ m?2 yr?1, on a lake-area basis). Denitrification, SO 4 2? reduction, and photochemical and microbial decomposition of allochthonous organic matter were the most important in-lake H+ consuming processes (215, 85, and 122 mmol H+ m?2 yr?1, respectively), while hydrolysis of Ali was the dominant H+ generating process (96 mmol H+ m?2 yr?1) in ?ertovo Lake. Photochemical liberation from organic complexes was an additional in-lake source of Ali. The net in-lake retention or removal of nutrients (carbon, phosphorus, nitrogen, and silica) varied between 18% and 34% of their inputs.  相似文献   

9.
Ground water inputs and outputs of N were studied for a small ground water discharge swamp situated in a headwater drainage basin in southern Ontario, Canada. Darcy's equation with data for piezometers was used to measure inputs of shallow local ground water at the swamp margin and deep regional ground water beneath the swamp. Ground water flux was also quantified by measuring ground water discharge to the outlet stream draining the swamp in combination with a chemical mixing model to separate shallow and deep ground water components based on chloride differences. Estimates of shallow ground water flux determined by these two approaches agreed closely however, the piezometer data seriously underestimated the deep ground water input to the swamp. An average ground water input-output budget of total N (TN) total organic nitrogen (TON) ammonium (NH4 +-N) and nitrate (NO3 --N) was estimated for stream base flow periods which occurred on an average of 328 days each year during 1986–1990. Approximately 90% of the annual NO3 --N input was contributed by shallow ground water at the swamp margin. Deep ground water represented about 65% of the total ground water input and a similar proportion of TON and NH4 +-N inputs. Annual ground water NO3 --N inputs and outputs were similar whereas NH4 +-N retention was 4 kg ha-1 representing about 68% of annual ground water input. Annual TON inputs in ground water exceeded outputs by 7.7 kg ha (27%). The capacity of the swamp to regulate ground water N fluxes was influenced by the N chemistry of ground water inputs and the hydrologic pathways of transport within the swamp.  相似文献   

10.
The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.  相似文献   

11.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

12.
To assess the long-term effects of atmospheric deposition on forest floor chemical composition, we took quantitative samplings of L-(Oi), F-(Oe), and H-(Oa) layers at an old-growth sugar maple–yellow birch stand on a till soil at the Turkey Lakes Watershed near Lake Superior, Ontario, Canada, in 1981 and 1996. We then assessed these samples for contents of organic matter (OM), total N, K, Ca, Mg, S, and Na, and exchangeable NH4 +, NO3 , K+, Ca2+, Mg2+, SO4 2−, and Na+. Over the 15-year period, total OM and element contents remained unchanged, with the exception of N, which increased significantly from 61.3 kmol/ha in 1981 to 78.4 kmol/ha in 1996. On an area basis, there were significant increases in exchangeable Ca2+ (from 3.8 to 4.6 kmol/ha) and Na+ (from 0.05 to 0.08 kmol/ha) and decreases in exchangeable NH4 +-N (from 1.41 to 0.95 kmol/ha) and SO4 2−-S (from 1.29 to 0.96 kmol/ha). There were no significant differences in average annual litterfall OM, N, Ca, Mg, S or Na inputs between 1980 and 1985 and between 1992 and 1997. Average annual wet-only SO4 2−-S deposition during 1981–86 was 0.30; during 1992–97, it was 0.21 kmol/ha. Annual wet-only NO3 -N averaged 0.33 kmol/ha during 1981–86 and was similar during 1992–97. Throughfall was less rich in SO4 2− and Ca2+, Mg2+, and Na+ during 1992–97 than earlier. Throughfall NH4 + and NO3 fluxes were unchanged. Efflux of cations from the forest floor reflected reduced throughput of SO4 2−. Overall, the results suggest that in spite of atmospheric inputs, active biological processes—including litter input, fine-root turnover, and tree uptake—serve to impart stability to the mineral composition of mature sugar maple forest floor. Received 5 October 1999; accepted 25 October 2000.  相似文献   

13.
Epilimnetic sulfate reduction and its relationship to lake acidification   总被引:2,自引:11,他引:2  
Sulfate reduction occurred from 0–3 cm below the surface of the epilimnetic sediments of three northwestern Ontario lakes, including L.223, which has been experimentally acidified by additions of sulfuric acid. Shallow water sites were conducive to SO4 2– reduction because decomposition in these predominantly sandy sediments caused oxygen concentrations to decrease rapidly within mm below the interface. The occurrence of methanogenesis just below the depth of minimum SO4 2- concentration demonstrated that availability of organic carbon was not a limiting factor for sulphate reduction.Laboratory studies showed that SO4 2- reduction rates in mixed sediments were lower at pH 4 than at pH 6. However, sulfate gradients in sediments indicated that there was no effect of acidification on sulfate reduction in situ. This was probably because microbial H+ consumption in the epilimnetic sediments maintained steep pH gradients below the sediment-water interface. The pH increased from = 5.0 to 6.5 or higher by a depth of 3.0 cm into the sediments.  相似文献   

14.
Seasonal dynamics of S, Ca and N were examined at the Huntington Forest, a northern hardwood ecosystem in the central Adirondacks of New York for a period of 34 months (1985–1988). Solute concentrations and fluxes in bulk precipitation, throughfall (TF) and leachates from the forest floor, E horizon and B horizon were quantified. Both above and below-ground elemental fluxes mediated by vegetation (e.g. uptake, litter inputs, and fine roots production) were also determined. The roles of abiotic and biotic processes were ascertained based on both changes in solute concentrations through the strata of the ecosystem as well as differences between dormant and growing seasons. Concentrations of SO4 2−, NO3 , NH4 + and Ca2+ were greater in TF than precipitation. Forest floor leachates had greater concentrations of SO4 2−, NO3 + NH4 + and Ca2+ (9, 6 and 77 μeq L−1, respectively) than TF. There were differences in concentrations of ions in leachates from the forest floor between the dormant and growing seasons presumably due to vegetation uptake and microbial immobilization. Concentrations and fluxes of NO3 and NH; were greatest in early spring followed by a rapid decline which coincided with a demand for N by vegetation in late spring. Vegetation uptake (44.7 kg N ha−1 yr−1 ) could account for the low leaching rates of N03 . Within the mineral soil, changes with soil depth and the absence of seasonal patterns suggest that cation exchange (Ca+) or anion sorption (SO4 2−) are primarily responsible for regulating solute concentrations. The increase in SO4 2− concentration after leachates passed through the mineral soil may be attributed to desorption of sulfate that was adsorbed during an earlier period when SO4 2− concentrations would have been greater due to elevated S inputs.  相似文献   

15.
Microsensors used in microbial ecology are reviewed with emphasis on new sensor developments (NO3 -, NO2 -, NH4 +, CO2, H2, H2S and CH4 microsensors as well as fiberoptical microsensors for O2, temperature and pH). Examples of microsensor applications in biofilms and activated sludge flocs are presented, where sulfate reduction and denitrification were studied.  相似文献   

16.
The brown algae Desmarestia ligulata var. ligulata (Lightf.) Lamour., and D. viridis (Mull.) Lamour., accumulate H2SO4 until their average internal pH is 0.5 to 0.8. A related species, D. aculeata (L.) Lamour., does not accumulate acid. The H2SO4 accumulation is accompanied by a reduction in the K+ and Cl content, presumedly to maintain osmotic balance. Measurements of the membrane potential and H+ and SO42− concentrations indicate that both ions are accumulated in the vacuole against their electrochemical potential gradients.

The internal pH remains constant in all three species over the growing season, despite striking changes in the algal morphology. The pH is not affected by periods of darkness of up to 34 hours. Sulfate accumulated in the vacuoles appears to be trapped there since incubation of D. ligulata for up to 10 days in sulfate-free medium resulted in little loss of either vacuolar sulfate or H+. Although the uptake of H2SO4 into the vacuole must require energy, the maintenance of the vacuolar H2SO4 may be due to the impermeability of the tonoplast, with little necessity for continued expenditure of energy.

  相似文献   

17.
Myall Lakes is a large brackish coastal lake on the east coast of Australia that was considered pristine until the occurrence of blue-green algal blooms in 1999. The temporal and spatial extent of chemical and biological changes to the water column of Myall Lakes was studied intensively after a rain event in 2002. Water quality profiles (T, EC, pH, DO), turbidity (secchi), nutrients (TN, NO x , NH4 +, DON, TP, FRP, DOP, Si), and phytoplankton (chl a and cell counts) were measured at nine sites on eight occasions immediately after the rain event. Freshwater inflows affected a large area of the lake. Greatest changes were seen in areas close to the mouth of the upper Myall River which is the largest freshwater input to the lakes. Here, greatly elevated concentrations of NO x , TP, and FRP (up to two orders of magnitude higher than background) were recorded immediately after the rain event but persisted for only 2 to 8 days. Slightly elevated concentrations of TP and NO x were seen in inflows from the smaller Boolambayte Creek. Stratification was associated with bottom water anoxia and release of ammonia from the sediments. Identification of the sources of nutrient species delivered from different parts of the catchment, combined with studies of nutrient loads can assist managers to develop effective nutrient reduction strategies to reduce the incidence of blue-green algal blooms in Myall Lakes.  相似文献   

18.
Chemical limnology of soft water lakes in the Upper Midwest   总被引:2,自引:0,他引:2  
Water samples from 36 lakes in northern Minnesota, Wisconsin, and Michigan were collected and analyzed during 1983–1984. All study lakes were dilute and had total alkalinities of less than 150 eq · L–1. Minnesota lakes have hydrologic inputs from the watershed and inputs of base cations derived from the watershed. Study lakes in Minnesota had higher total alkalinities, dissolved organic carbon, and noncarbonate alkalinity as a result of watershed inputs. Lakes in Michigan and Wisconsin were precipitation-dominated seepage lakes that have lower concentrations of base cations than lakes in Minnesota. All of the study lakes have lower sulfate concentrations than expected, based on atmospheric wet deposition and evapotranspiration.Pore water samples collected from one of the study lakes—Little Rock Lake—in Wisconsin were used to calculate diffusive fluxes between the sediment and water column. According to these calculations, the sediments were a source of total alkalinity and Ca2+ and a sink for SO4 2–. The sediment-water exchange of total alkalinity, Ca2+, and SO4 2– appears to be important in the whole-lake budgets of these ions for Little Rock Lake.  相似文献   

19.
The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53–70 mmol m–2 yr–1), deposition of sulfur to sediments in settling seston (53 mmol m–2 yr–1), and sulfate diffusion (0–39 mmol m–2 yr–1) into sediments were examined. Measurements of inputs (12–108 mmol m–2 yr–1) and outputs (5.5–25 mmol m–2 yr–1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10–28 mmol m–2 yr–1) and measured fluxes of S into the sediments. Because of the low SO4 2– concentrations (µmole L–1) in the lake, annual uptake by plankton (53–70 mmol m–2 yr–1) represented a large fraction (>50%) of the SO4 2– inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO4 2– concentrations (µmole L–1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0–160 µmole m–2 d–1) caused SO4 2– depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO4 2– concentrations indicated that only 30–50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.  相似文献   

20.
Ricinus communis L. plants were grown in nutrient solutions in which N was supplied as NO3 or NH4+, the solutions being maintained at pH 5.5. In NO3-fed plants excess nutrient anion over cation uptake was equivalent to net OH efflux, and the total charge from NO3 and SO42− reduction equated to the sum of organic anion accumulation plus net OH efflux. In NH4+-fed plants a large H+ efflux was recorded in close agreement with excess cation over anion uptake. This H+ efflux equated to the sum of net cation (NH4+ minus SO42−) assimilation plus organic anion accumulation. In vivo nitrate reductase assays revealed that the roots may have the capacity to reduce just under half of the total NO3 that is taken up and reduced in NO3-fed plants. Organic anion concentration in these plants was much higher in the shoots than in the roots. In NH4+-fed plants absorbed NH4+ was almost exclusively assimilated in the roots. These plants were considerably lower in organic anions than NO3-fed plants, but had equal concentrations in shoots and roots. Xylem and phloem saps were collected from plants exposed to both N sources and analyzed for all major contributing ionic and nitrogenous compounds. The results obtained were used to assist in interpreting the ion uptake, assimilation, and accumulation data in terms of shoot/root pH regulation and cycling of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号