共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies in a variety of species have shown that polyandrous females are somehow able to bias paternity against their relatives postcopulation, although how they do so remains unknown. Field crickets readily mate with their siblings, but when also mated to an unrelated male, they produce disproportionately fewer inbred offspring. We use a new competitive microsatellite polymerase chain reaction technique to determine the contribution of males to stored sperm and subsequent paternity of offspring. Paternity is almost completely predicted by how much sperm from a particular male is stored, and unrelated males contribute more sperm to storage and have a corresponding higher paternity success. 相似文献
2.
In many species, the negative fitness effects of inbreeding have facilitated the evolution of a wide range of inbreeding avoidance mechanisms. Although avoidance mechanisms operating prior to mating are well documented, evidence for postcopulatory mechanisms of inbreeding avoidance remain scarce. Here, we examine the potential for paternity biases to favour unrelated males when their sperm compete for fertilizations though postcopulatory inbreeding avoidance mechanisms in the guppy, Poecilia reticulata. To test this possibility, we used a series of artificial inseminations to deliver an equal number of sperm from a related (either full sibling or half sibling) and unrelated male to a female while statistically controlling for differences in sperm quality between rival ejaculates. In this way, we were able to focus exclusively on postcopulatory mechanisms of inbreeding avoidance and account for differences in sperm competitiveness between rival males. Under these carefully controlled conditions, we report a significant bias in paternity towards unrelated males, although this effect was only apparent when the related male was a full sibling. We also show that sperm competition generally favours males with highly viable sperm and thus that some variance in sperm competitiveness can be attributed to difference in sperm quality. Our findings for postcopulatory inbreeding avoidance are consistent with prior work on guppies, revealing that sperm competition success declines linearly with the level of relatedness, but also that such effects are only apparent at relatedness levels of full siblings or higher. These findings reveal that postcopulatory processes alone can facilitate inbreeding avoidance. 相似文献
3.
Previous studies of the cricket Teleogryllus oceanicus have shown a paternity bias towards non-sibling males. Although non-kin-biased paternity could represent a mechanism of postcopulatory inbreeding avoidance by females, evolutionarily stable strategy (ESS) models of ejaculate evolution also predict that males should reduce their expenditure on the ejaculate when mating with their sisters. Here we provide a test of these models, finding that male crickets invest equally in matings with full-siblings, half-siblings and non-sibling females. The data suggest that in this species, males and females differ in their response to inbreeding. 相似文献
4.
Jennions MD Hunt J Graham R Brooks R 《Evolution; international journal of organic evolution》2004,58(11):2472-2477
Several studies suggest that females mate multiply so that they can preferentially fertilize eggs with the sperm of genetically more compatible males. Unrelated males are expected to be genetically more compatible with a female than her close relatives. We tested whether black field crickets, Teleogryllus commodus, can bias sperm usage toward unrelated males by comparing egg hatching success of females mated to two of their siblings (SS), two sibling males unrelated to the female (NN) or to one unrelated male and a sibling male (NS or SN). Egg hatching success was highly repeatable. Hatching success varied significantly among females of the three mating types (P = 0.011, n = 245 females). The estimated mean hatching success of 36.8% for SS females was significantly less that the 43.4% of NN females, indicating an effect of inbreeding on hatching success. If females preferentially use the sperm of a less closely related male, the hatching success of NS/SN females should be closer to 43.4% than 36.8%. It was, in fact, only 34.9%. This does not differ significantly from the value expected if the two males contributed an equal amount of sperm that was then used randomly. Although polyandry may confer indirect genetic benefits, our results provide no evidence that female T. commodus gain these benefits by biasing paternity toward genetically more compatible males through postcopulatory mechanisms. 相似文献
5.
Simmons LW 《Journal of evolutionary biology》2003,16(4):624-634
The sexy-sperm hypothesis predicts that females obtain indirect benefits for their offspring via polyandy, in the form of increased fertilization success for their sons. I use a quantitative genetic approach to test the sexy-sperm hypothesis using the field cricket Teleogryllus oceanicus. Previous studies of this species have shown considerable phenotypic variation in fertilization success when two or more males compete. There were high broad-sense heritabilities for both paternity and polyandry. Patterns of genotypic variance were consistent with X-linked inheritance and/or maternal effects on these traits. The genetic architecture therefore precludes the evolution of polyandry via a sexy-sperm process. Thus the positive genetic correlation between paternity in sons and polyandry in daughters predicted by the sexy-sperm hypothesis was absent. There was significant heritable variation in the investment by females in ovaries and by males in the accessory gland. Surprisingly there was a very strong genetic correlation between these two traits. The significance of this genetic correlation for the coevolution of male seminal products and polyandry is discussed. 相似文献
6.
7.
Recent evidence shows that females exert a post‐copulatory fertilization bias in favour of unrelated males to avoid the genetic incompatibilities derived from inbreeding. One of the mechanisms suggested for fertilization biases in insects is female control over transport of sperm to the sperm‐storage organs. We investigated post‐copulatory inbreeding‐avoidance mechanisms in females of the cricket Teleogryllus oceanicus. We assessed the relative contribution of related and unrelated males to the sperm stores of double‐mated females. To demonstrate unequivocally that biased sperm storage results from female control rather than cryptic male choice, we manipulated the relatedness of mated males and of males performing post‐copulatory mate guarding. Our results show that when guarded by a related male, females store less sperm from their actual mate, irrespective of the relatedness of the mating male. Our data support the notion that inhibition of sperm storage by female crickets can act as a form of cryptic female choice to avoid the severe negative effects of inbreeding. 相似文献
8.
Moore J 《Molecular ecology》2007,16(21):4421-4423
Perhaps the most important 'decision' made by any animal (or plant) is whether to disperse--leave kith and kin, or remain with the familiar and related. The benefits of staying at home are obvious, so dispersal requires an explanation--and the most popular is that dispersal functions to avoid inbreeding depression. Strong support comes from the observation that dispersal is so often sex biased. Simply put, all else being equal members of both sexes should prefer to remain philopatric, but this would lead to inbreeding depression so members of one sex have to disperse. In principle, this link between inbreeding depression and sex-biased dispersal could be broken if individuals recognize close kin and avoid mating with them. Archie et al. (2007) provide one of the most compelling analyses to date of the interaction among inbreeding avoidance, kin recognition and mating strategies in any mammal, clearly showing that elephants recognize even close paternal kin and avoid mating with them. Their important results illuminate the subtleties of elephant inbreeding avoidance as well as illustrate the difficulty of arriving at definitive answers to questions about the evolution of dispersal behaviour. 相似文献
9.
《Current biology : CB》2022,32(7):1607-1615.e4
10.
Dispersal by young mammals away from their natal site is generallythought to reduce inbreeding, with its attendant negative fitnessconsequences. Genetic data from the dwarf mongoose, a pack-livingcarnivore common in African savannas, indicate that there areexceptions to this generalization. In dwarf mongoose populationsin the Serengeti National Park, Tanzania, breeding pairs arecommonly related, and close inbreeding has no measurable effecton offspring production or adult survival. Inbreeding occursbecause average relatedness among potential mates within a packis high, because mating patterns within the pack are randomwith respect to the relatedness of mates, and because dispersaldoes little to decrease the relatedness among mates. Young femalesare more likely to leave a pack when the dominant male is aclose relative but are relatively infrequent dispersers. Youngmales emigrate at random with respect to the relatedness ofthe dominant female and tend to disperse to packs that containgenetically similar individuals.[Behav Ecol 7: 480489(1996)] 相似文献
11.
Repeated mating by females of many species occurs at frequenciesin excess of those needed to acquire additional sperm for fertilizingova. I tested three alternative hypotheses for the rate of rematingby females of the courtship-feeding tree cricket, Oecanthusnigricornis Walker, by manipulating diet quality and courtshipfeeding and measuring the time to remating by the female inrelation to four aspects of male phenotype (age, condition,fluctuating asymmetry, and size). First, in courtship-feedingspecies, remating may be due to selection to increase the amountof nutritional resources provided by males, with nutrient-deprivedfemales remating more quickly. Second, remating may functionas a mechanism of postcopulatory mate choice, with females rematingquickly when the quality of a previous mate is low. Third, quicknessof remating may be the consequence of precopulatory mate choiceprior to future matings, with females remating more quicklywith high-quality males, regardless of the quality of priormates. Females on a low-quality diet remated quickly, did notvary remating speed with the phenotype of their first mate,and did not differentially reject prospective second mates withdifferent phenotypes. In contrast, both the degree of coyness(measured as the frequency of mate rejection) and the intensityof female choice (measured as the size differential betweenaccepted and rejected mates) increased with diet quality. Theseresults support both the material-benefits and the precopulatorymate-choice hypotheses for remating speed of female tree crickets.There was mixed support for the postcopulatory choice hypothesis:females on the high-quality diet remated more slowly after firstmating with relatively large males, in support of the postcopulatorychoice hypothesis; however, the remating interval of femaleson the high-quality diet decreased with the condition of thefirst mate, opposite to the prediction of the postcopulatorychoice hypothesis 相似文献
12.
Evolution of precopulatory and post‐copulatory strategies of inbreeding avoidance and associated polyandry 下载免费PDF全文
Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post‐copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post‐copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post‐copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post‐copulatory inbreeding avoidance might cause functional redundancy (i.e. ‘degeneracy’) potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual‐based modelling to quantify evolution of interacting precopulatory and post‐copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post‐copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower‐cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post‐copulatory inbreeding avoidance, but fixed post‐copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post‐copulatory inbreeding avoidance is precluded or costly, and evolution of post‐copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry. 相似文献
13.
Ala-Honkola O Manier MK Lüpold S Pitnick S 《Evolution; international journal of organic evolution》2011,65(9):2699-2705
Selection to avoid inbreeding is predicted to vary across species due to differences in population structure and reproductive biology. Over the past decade, there have been numerous investigations of postcopulatory inbreeding avoidance, a phenomenon that first requires discrimination of mate (or sperm) relatedness and then requires mechanisms of male ejaculate tailoring and/or cryptic female choice to avoid kin. The number of studies that have found a negative association between male-female genetic relatedness and competitive fertilization success is roughly equal to the number of studies that have not found such a relationship. In the former case, the underlying mechanisms are largely unknown. The present study was undertaken to verify and expand upon a previous report of postcopulatory inbreeding avoidance in D. melanogaster, as well as to resolve underlying mechanisms of inbreeding avoidance using transgenic flies that express a sperm head-specific fluorescent tag. However, siblings did not have a lower fertilization success as compared to unrelated males in either the first (P(1) ) or second (P(2) ) mate role in sperm competition with a standard unrelated competitor male in our study population of D. melanogaster. Analyses of mating latency, copulation duration, egg production rate, and remating interval further revealed no evidence for inbreeding avoidance. 相似文献
14.
Elise Huchard Alice Baniel Susanne Schliehe‐Diecks Peter M. Kappeler 《Molecular ecology》2013,22(15):4071-4086
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice. 相似文献
15.
Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance 总被引:5,自引:0,他引:5
Denk Angelika G.; Holzmann Alois; Peters Anne; Vermeirssen Etienne L.M.; Kempenaers Bart 《Behavioral ecology》2005,16(5):825-833
Postcopulatory processes might play an important role in sexualselection. In theory, fertilization success could be controlledby females via selection of particular sperm within their reproductivetract, or it could be determined by sperm competition per se.In practice, these two mechanisms are difficult to disentangle.To assess the relative importance of both mechanisms we usedartificial insemination in combination with measurements ofsperm quality (swimming speed and motility) in mallards. Inthis species, females often lack behavioral control over copulationsand hence may use postcopulatory mechanisms to optimize theirreproductive output. One important factor affecting female fitnessmay be selection of genetically compatible males. To investigatethe influence of sperm quality and parental relatedness on paternitywe inseminated 12 groups of related females with a sperm mixturecontaining equal numbers of sperm from a brother and from anunrelated male. Paternity was independent of the relatednessof the siring male to the female but was significantly affectedby long-term sperm swimming speed and motility. No interactionbetween relatedness and sperm quality on paternity was observed.These results suggest that female mallards are not able to selectsperm on a purely genetic basis and emphasize the importanceof sperm quality in gaining paternity. 相似文献
16.
17.
Competitive fertilization success can depend on the relative abilities of competing males to fertilize available ova, and on mechanisms of cryptic female choice that moderate paternity. Competitive fertilization success is thus an emergent property of competing male genotypes, female genotype and their interactions. Accurate estimates of intrinsic male effects on competitive fertilization success are therefore problematic. We used a cross‐classified nonbreeding design in which rival male family background was standardized to partition variation in competitive fertilization success among male and female family backgrounds in the field cricket Teleogryllus oceanicus. Male effects were close to zero, supporting previous quantitative genetic designs in which male competitors were assigned at random. In contrast, some 22% of the variance in competitive fertilization success was explained by female effects, suggesting that paternity in this species is influenced strongly by cryptic female choice. 相似文献
18.
The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy‐sperm” (GS‐SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS‐SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS‐SS models. Here, we conduct quantitative genetic analyses on paternal half‐siblings to test this component of GS‐SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow‐sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean‐standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life‐history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS‐SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. 相似文献
19.
Gasparini C Pilastro A 《Proceedings. Biological sciences / The Royal Society》2011,278(1717):2495-2501
As inbreeding is costly, it has been suggested that polyandry may evolve as a means to reduce the negative fitness consequences of mating with genetically related males. While several studies provide support for this hypothesis, evidence of pure post-copulatory mechanisms capable of biasing paternity towards genetically unrelated males is still lacking; yet these are necessary to support inbreeding avoidance models of polyandry evolution. Here we showed, by artificially inseminating a group of female guppies with an equal number of sperm from related (full-sib) and unrelated males, that sperm competition success of the former was 10 per cent lower, on average, than that of the unrelated male. The paternity bias towards unrelated males was not due to differential embryo survival, as the size of the brood produced by control females, which were artificially inseminated with the sperm of a single male, was not influenced by their relatedness with the male. Finally, we collected ovarian fluid (OF) from virgin females. Using computer-assisted sperm analysis, we found that sperm velocity, a predictor of sperm competition success in the guppy, was significantly lower when measured in a solution containing the OF from a sister as compared with that from an unrelated female. Our results suggest that sperm-OF interaction mediates sperm competition bias towards unrelated mates and highlight the role of post-copulatory mechanisms in reducing the cost of mating with relatives in polyandrous females. 相似文献
20.
Females typically mate with more than one male despite the costs incurred, thus questioning Bateman's principle. A series of genetic benefits have been proposed to account for the evolution of polyandry, including the acquisition of viability genes for offspring. The 'intrinsic male quality' hypothesis suggests that polyandry increases the probability that females produce offspring sired by males that bestow high viability on their offspring. Heritable variation in viability is the basic requirement for the occurrence of this genetic benefit. By using a half-sib breeding design with a species of cricket in which polyandry is known to increase hatching success, we present clear experimental evidence that intrinsic male quality contributes to embryo viability. Despite recent support for the evolution of polyandry based on compatibility of genotypes between males and females, we show that hatching success is not determined by an interaction between paternal and maternal genotypes but rather that sons inherit paternal genes that influence the viability of eggs laid by their mates. Moreover, our data implicate a potential role for indirect genetic effects of male accessory gland products on embryo viability. Additive genetic contributions to embryo viability may be an important factor underlying the frequently observed benefits of polyandrous behaviour. 相似文献