首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low YL  Tai ES 《Mutation research》2007,622(1-2):7-13
Socioeconomic development has resulted in an epidemiologic transition which has involved an increase in mortality and morbidity from chronic non-communicable diseases. Cardiovascular disease is one such disease. The rapidity with which this transition has occurred suggests that genetic factors are unlikely to be responsible. However, studies in twins suggest significant heritability for cardiovascular disease and its associated risk factors. We present data showing diet-gene interactions involving polymorphisms at the PPARA and PLIN loci. These data support the hypothesis that chronic diseases such as cardiovascular disease are a consequence of a complex interplay of genetic and environmental factors, of which diet plays an important role. They suggest that the effects of diet on chronic disease may be masked by heterogeneity of effect related to genetic variability between individuals and that consideration of diet-gene interactions may contribute to our understanding of the pathogenesis of cardiovascular disease. The identification of diet-gene interactions offers us an opportunity to develop dietary interventions that will obviate the effects of genetic factors on the risk of disease. In this way, we may be able to develop personalized dietary recommendations that optimize the outcome for the individual concerned. Nevertheless, while existing data points to the value of these studies, significant challenges need to be met to ensure that our conclusions are scientifically valid.  相似文献   

2.
The basic premise of conservation genetics is that small populations may be genetically threatened. The two steps leading to this premise are: (1) due to prominent influence of random genetic drift and inbreeding allelic and genotypic diversity in small populations is expected to be low, and (2) low allelic diversity and high homozygosity are expected to lead to immediate fitness decreases (inbreeding depression) and a compromised potential for evolutionary adaptation. Conservation genetic research has been strongly stimulated by the application of neutral molecular markers like microsatellites and AFLPs. In general these marker studies have provided evidence for step 1. It is less evident how these markers may provide evidence for step 2. In this essay we argue that, in order to get detailed insight in step 2, adopting a conservation genomic approach, in which conservation genetics will use approaches from ecological and evolutionary functional genomics (ecogenomics), is both necessary and feasible. Conservation genomics is necessary for studying functional genomic variation as function of drift and inbreeding, for studying the mechanisms that relate low genetic variation to low fitness, for integrating environmental and genetic approaches to conservation biology, and for developing modern, fast monitoring tools. The rapid technical and financial developments in genomics currently make conservation genomics feasible, and will improve feasibility in the very near future even further. We therefore argue that conservation genomics personifies part of the near future of conservation genetics.  相似文献   

3.
Conservation genetics and genomics are two independent disciplines that focus on using new techniques in genetics and genomics to solve problems in conservation biology. During the past two decades, conservation genetics and genomics have experienced rapid progress. Here, we summarize the research advances in the conservation genetics and genomics of threatened vertebrates (e.g., carnivorans, primates, ungulates, cetaceans, avians, amphibians and reptiles) in China. First, we introduce the concepts of conservation genetics and genomics and their development. Second, we review the recent advances in conservation genetics research, including noninvasive genetics and landscape genetics. Third, we summarize the progress in conservation genomics research, which mainly focuses on resolving genetic problems relevant to conservation such as genetic diversity, genetic structure, demographic history, and genomic evolution and adaptation. Finally, we discuss the future directions of conservation genetics and genomics.  相似文献   

4.
5.
Morris ME  Zhang S 《Life sciences》2006,78(18):2116-2130
Flavonoids are present in fruits, vegetables and beverages derived from plants (tea, red wine), and in many dietary supplements or herbal remedies including Ginkgo Biloba, Soy Isoflavones, and Milk Thistle. Flavonoids have been described as health-promoting, disease-preventing dietary supplements, and a high intake of flavonoids has been associated with a reduced risk of cancer, cardiovascular diseases, osteoporosis and other age-related degenerative diseases. Due to an increased public interest in alternative medicine and disease prevention, the use of herbal preparations containing high doses of flavonoids for health maintenance has become very popular, raising the potential for interactions with conventional drug therapies. This review will summarize the current literature regarding the interactions of flavonoids with ATP-binding cassette (ABC) efflux transporters, mainly P-glycoprotein, MRP1, MRP2 and BCRP and discuss the potential consequences for flavonoid-drug transport interactions.  相似文献   

6.
Functional genomics of wood quality and properties   总被引:1,自引:0,他引:1  
Genomics promises to enrich the investigations of biology and biochemistry. Current advancements in genomics have major implications for genetic improvement in animals, plants, and microorganisms, and for our understanding of cell growth, development, differentiation, and communication. Significant progress has been made in the understanding of plant genomics in recent years, and the area continues to  相似文献   

7.
Functional genomics: identifying drug targets for parasitic diseases   总被引:1,自引:0,他引:1  
The genomic sequences of parasitic diseases are rapidly becoming available and, recently, the full sequence of Plasmodium falciparum has been published. Much has been promised from this genomic revolution including the identification of new drug targets and novel chemotherapeutic treatments for the control of parasitic diseases. The challenge to use this information efficiently will require functional genomics tools such as bioinformatics, microarrays, proteomics and chemical genomics to identify potential drug targets, and to allow the development of optimized lead compounds. The information generated from these tools will provide a crucial link from genomic analysis to drug discovery.  相似文献   

8.
Zheng S  Geghman K  Shenoy S  Li C 《遗传学报》2012,39(6):261-268
The rat is a powerful model for the study of human physiology and diseases,and is preferred by physiologists,neuroscientists and toxicologists.However,the lack of robust genetic modification tools has severely limited the generation of rat genetic models over the last two decades.In the last few years,several gene-targeting strategies have been developed in rats using N-ethyl-N-nitrosourea(ENU), transposons,zinc-finger nucleases(ZFNs),bacterial artificial chromosome(BAC) mediated transgenesis,and recently established rat embryonic stem(ES) cells.The development and improvement of these approaches to genetic manipulation have created a bright future for the use of genetic rat models in investigations of gene function and human diseases.Here,we summarize the strategies used for rat genetic manipulation in current research.We also discuss BAC transgenesis as a potential tool in rat transgenic models.  相似文献   

9.
Interactions of Apple and the Alternaria alternata Apple Pathotype   总被引:1,自引:0,他引:1  
Apple is one of the most cultivated tree fruits worldwide, and is susceptible to many diseases. Understanding the interactions between the host and pathogen is critical in implementing disease management strategies and developing resistant cultivars. This review provides an update on the interactions of apple with Alternaria alternata apple pathotype, which causes Alternaria blotch, with a brief history about the discovery of the disease and pathogen and its damage and epidemiology. The focus of the review is placed on the physiological and genetic response of the host to pathogen infection, including resistance and susceptibility, and the molecular markers associated with them. Of the response of the pathogen to the host, the emphasis is placed on the role of the selective toxins on pathogenicity and their genetic controls and regulations. The review ends with a perspective on future directions in the research on the apple-A. alternata pathosystem in the era of genomics and post genomics, particularly on how to identify candidate genes from both host and pathogen for potential genetic engineering for disease resistant cultivars.  相似文献   

10.
Kaput J  Dawson K 《Mutation research》2007,622(1-2):19-32
Nutrigenomics promises personalized nutrition and an improvement in preventing, delaying, and reducing the symptoms of chronic diseases such as diabetes. Nutritional genomics is the study of how foods affect the expression of genetic information in an individual and how an individual's genetic makeup affects the metabolism and response to nutrients and other bioactive components in food. The path to those promises has significant challenges, from experimental designs that include analysis of genetic heterogeneity to the complexities of food and environmental factors. One of the more significant complications in developing the knowledge base and potential applications is how to analyze high-dimensional datasets of genetic, nutrient, metabolomic (clinical), and other variables influencing health and disease processes. Type 2 diabetes mellitus (T2DM) is used as an illustration of the challenges in studying complex phenotypes with nutrigenomics concepts and approaches.  相似文献   

11.
12.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

13.
From Pasteur to genomics: progress and challenges in infectious diseases   总被引:3,自引:0,他引:3  
Rappuoli R 《Nature medicine》2004,10(11):1177-1185
Over the past decade, microbiology and infectious disease research have undergone the most profound revolution since the times of Pasteur. Genomic sequencing has revealed the much-awaited blueprint of most pathogens. Screening blood for the nucleic acids of infectious agents has blunted the spread of pathogens by transfusion, the field of antiviral therapeutics has exploded and technologies for the development of novel and safer vaccines have become available. The quantum jump in our ability to detect, prevent and treat infectious diseases resulting from improved technologies and genomics was moderated during this period by the greatest emergence of new infectious agents ever recorded and a worrisome increase in resistance to existing therapies. Dozens of new infectious diseases are expected to emerge in the coming decades. Controlling these diseases will require a better understanding of the worldwide threat and economic burden of infectious diseases and a global agenda.  相似文献   

14.
Towards molecular breeding and improvement of rice in China   总被引:12,自引:0,他引:12  
Wang Y  Xue Y  Li J 《Trends in plant science》2005,10(12):610-614
China is the largest producer and consumer of rice in the world and a pioneer in applying hybrid rice technology. Although hybrid rice has contributed greatly to Chinese agriculture in the past decades, its potential to improve grain quality further is being questioned. However, to meet the challenges posed by severe crop damage by pests and diseases, the extensive use of pesticides and chemical fertilizers, and a shortage of water and energy, more elite rice cultivars are needed. In recent years, China has seen continued improvements in rice genetics, powered by functional genomics as a way forward to safeguard its rice production. Here, we briefly review the current status of rice breeding in China through strategies integrating hybrid rice technology, molecular marker-assisted breeding, functional genomics and genetically modified rice.  相似文献   

15.
Nutrition is the cornerstone of health; survival depends on acquiring essential nutrients, and dietary components can both prevent and promote disease. Metabolomics, the study of all small molecule metabolic products in a system, has been shown to provide a detailed snapshot of the body's processes at any particular point in time, opening up the possibility of monitoring health and disease, prevention and treatment. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology and medicine. Technological advances, combined with new knowledge of the human genome and gut microbiome, have made and will continue to make possible earlier, more accurate, less invasive diagnoses, all while enhancing our understanding of the root causes of disease and leading to a generation of dietary recommendations that enable optimal health. This article reviews the recent contributions of metabolomics to the fields of nutrition, toxicology and medicine. It is expected that these fields will eventually blend together through development of new technologies in metabolomics and genomics into a new area of clinical chemistry: personalized medicine.  相似文献   

16.
Many environmental risk factors for common, complex human diseases have been revealed by epidemiologic studies, but how genotypes at specific loci modulate individual responses to environmental risk factors is largely unknown. Gene-environment interactions will be missed in genome-wide association studies and could account for some of the 'missing heritability' for these diseases. In this review, we focus on asthma as a model disease for studying gene-environment interactions because of relatively large numbers of candidate gene-environment interactions with asthma risk in the literature. Identifying these interactions using genome-wide approaches poses formidable methodological problems, and elucidating molecular mechanisms for these interactions has been challenging. We suggest that studying gene-environment interactions in animal models, although more tractable, might not be sufficient to shed light on the genetic architecture of human diseases. Lastly, we propose avenues for future studies to find gene-environment interactions.  相似文献   

17.
玉米比较基因组学研究进展   总被引:4,自引:0,他引:4  
玉米是世界上重要的粮食作物 ,长期以来一直是遗传学、分子生物学和基因组学研究的重点对象。近十多年来 ,涉及到玉米的基因组学研究取得了很大进展。不仅在利用比较遗传作图方法方面发现玉米和其它植物 (尤其是禾谷类作物 )的基因组存在广泛的共线性 ,在较小的DNA区域上也发现存在微共线性。尽管还存在一些共线性的例外情形 ,进一步的比较基因组学研究将深入阐明玉米基因组的结构和进化 ,并把这些研究成果应用于基因发掘中。  相似文献   

18.
Fundamental biological knowledge and the technology to acquire it have been immeasurably advanced by past efforts to understand and manipulate the genomes of model organisms. Has the utility of bacteria, yeast, worms, flies, mice, plants, and other models now peaked and are humans poised to become the model organism of the future? The Genetics Society of America recently convened its 2006 meeting entitled "Genetic Analysis: Model Organisms to Human Biology" to examine the future role of genetic research. (Because of time limitations, the meeting was unable to cover the substantial contributions and future potential of research on model prokaryotic organisms.) In fact, the potential of model-organism-based studies has grown substantially in recent years. The genomics revolution has revealed an underlying unity between the cells and tissues of eukaryotic organisms from yeast to humans. No uniquely human biological mechanisms have yet come to light. This common evolutionary heritage makes it possible to use genetically tractable organisms to model important aspects of human medical disorders such as cancer, birth defects, neurological dysfunction, reproductive failure, malnutrition, and aging in systems amenable to rapid and powerful experimentation. Applying model systems in this way will allow us to identify common genes, proteins, and processes that underlie human medical conditions. It will allow us to systematically decipher the gene-gene and gene-environment interactions that influence complex multigenic disorders. Above all, disease models have the potential to address a growing gap between our ability to collect human genetic data and to productively interpret and apply it. If model organism research is supported with these goals in mind, we can look forward to diagnosing and treating human disease using information from multiple systems and to a medical science built on the unified history of life on earth.  相似文献   

19.
《Gender Medicine》2007,4(3):248-265
Background: We stand on the verge of integrating individual genetic and genomic information into health care provision and maintenance to improve health, increase efficiency, and decrease costs. We are beginning to integrate information on inherited susceptibility, gene expression, and predicted pharmacogenomic response to refine our medical management.Objective: This article reviews the current utility of genetics and genomics in a wide array of clinical circumstances, considers the future applications, and defines some of the obstacles and potential solutions to clinical integration of genomic medicine.Methods: Using the search terms genetics, genomics, pharmacogenomics, newborn screening, long QT syndrome, BRCA1/BRCA2, maturity onset diabetes of youth, diabetes, hemochromatosis, coronary artery disease, copy number changes, genetic discrimination, and genetic education, the PubMed database was searched from January 2000 to March 2007 to identify pertinent articles. Search results were restricted to English-language and human studies.Results: Several areas of medicine have begun to incorporate genetics into clinical practice, including newborn screening and breast cancer risk stratification and treatment. Molecular genetic tests are, and will increasingly become, available for inherited arrhythmias, diabetes, cancer, coronary artery disease, and pharmacogenomics. However, there are many barriers to implementation, including the cost of testing, the genetic literacy of patients and health care providers, and concerns about genetic discrimination.Conclusion: Genetics and genomics will be increasingly utilized in every field of medicine; however, health care providers and patients must have realistic expectations about its predictive power and current limitations.  相似文献   

20.
Metagenomics- the application of the genomics technologies to nonculturable microbial communities, is coming of age. These approaches can be used for the screening and selection of nonculturable rumen microbiota for assessing their role in gastrointestinal (GI) nutrition, plant material fermentation and the health of the host. The technologies designed to access this wealth of genetic information through environmental nucleic acid extraction have provided a means of overcoming the limitations of culture-dependent microbial genetic exploitation. The molecular procedures and techniques will result in reliable insights into the GI microbial structure and activity of the livestock gut microbes in relation to functional interactions, temporal and spatial relationships among different microbial consortia and dietary ingredients. Future developments and applications of these methods promise to provide the first opportunity to link distribution and identity of rumen microbes in their natural habitats with their genetic potential and in situ activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号