首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous studies on glycosyltransferase activities in porcine trachea, we demonstrated the presence of two galactosyltransferases which transfer galactose from UDP-galactose to N-acetylglucosamine (Sheares, B.T. and Carlson, D.M. (1983) J. Biol. Chem. 258, 9893-9898). One enzyme, UDP-galactose:N-acetylglucosamine 3 beta-galactosyltransferase, synthesized galactosyl-beta 1,3-N-acetylglucosamine while the other, UDP-galactose:N-acetylglucosamine 4 beta-galactosyltransferase, synthesized galactosyl-beta 1,4-N-acetylglucosamine. A third galactosyltransferase has now been demonstrated utilizing a solubilized membrane preparation from pig trachea, which also synthesizes galactosyl-beta 1,4-N-acetylglucosamine as determined by gas-liquid chromatography and Diplococcus pneumoniae beta-galactosidase treatment. This new UDP-galactose:N-acetylglucosamine 4 beta-galactosyltransferase is distinct from the lactose synthetase A protein in that it does not bind to alpha-lactalbumin-agarose or to N-acetylglucosamine-agarose. The enzyme is separable from the UDP-galactose:N-acetylgalactosaminyl-mucin 3 beta-galactosyltransferase by affinity chromatography on asialo ovine submaxillary mucin adsorbed to DEAE-Sephacel. This newly discovered 4 beta-galactosyltransferase binds to UDP-hexanolamine-Sepharose and is partially separated from UDP-galactose:N-acetylglucosamine 3 beta-galactosyltransferase by Sephacryl S-200 gel filtration chromatography. Neither high concentrations of N-acetylglucosamine (200 mM) nor alpha-lactalbumin inhibits the incorporation of galactose into galactosyl-beta 1,4-N-acetylglucosamine by this enzyme.  相似文献   

2.
We have examined two galactosyltransferase activities in membrane preparations obtained from resident macrophages, from resident macrophages maintained in culture for 24 hr, and from thioglycollate (TG)-elicited macrophages. Transfer of galactose from uridine diphosphate (UDP)-galactose to N-acetylglucosamine is 2.6 times higher in membranes prepared from TG macrophages (107 +/- 5.5 nmol/hr/mg) than in membranes prepared from resident macrophages (41 +/- 2.0 nmol/hr/mg). Membranes obtained from resident macrophages cultured for 24 hr exhibit a 2.5 times higher activity (102 +/- 4.4 nmol/hr/mg) than membranes from resident cells plated for 4 hr. Transferase activity in membranes derived from TG macrophages is not significantly affected by overnight culture. The transferase reaction product, isolated on Bio-Gel P-4 and analyzed by galactosidase treatments, was identified as galactosyl-beta 1, 4-N-acetylglucosamine. The enzyme, therefore, is UDP-galactose:2-acetamido-2-deoxy-D-glucose 4 beta-galactosyltransferase. This is supported by the fact that this galactosyltransferase activity is specifically inhibited by high concentrations of N-acetylglucosamine (200 mM). We have also examined the transfer of galactose to N-acetyllactosamine. Membranes from TG-elicited macrophages contain a UDP-galactose:galactosyl-beta 1, 4-N-acetylglucosamine 3 alpha-galactosyltransferase which synthesizes the trisaccharide, galactosyl-alpha 1, 3-galactosyl-beta 1,4-N-acetylglucosamine. This product was identified by gel filtration chromatography, high performance liquid chromatography, and galactosidase digestions. This alpha-galactosyltransferase activity was not detected in membranes prepared from resident macrophages. These results indicate that glycosyltransferase activities are modulated in populations of mouse macrophages, and that these changes correlate with changes in cell surface lactosaminoglycans reported previously.  相似文献   

3.
A UDP-Gal:N-acetylglucosamine beta(1,4)-galactosyltransferase which catalyzes the synthesis of beta-D-Gal(1,4)-D-GlcNAc units has been purified 17,560-fold from Ehrlich tumor cells to apparent electrophoretic homogeneity. The enzyme appears to be a monomeric protein with Mr = 56,000-58,000. Enzymatic activity requires the presence of MnCl2, is stimulated by detergent, and exhibits a pH optimum at 6.9. The Km values for GlcNAc and UDP-Gal are 1.89 and 0.046 mM, respectively. The Ehrlich cell beta-galactosyltransferase acts efficiently on glycoproteins and glycolipids terminating in GlcNAc, but is inactive toward glycoconjugates possessing terminal GalNAc units. The oligosaccharides beta-D-GlcNAc(1,3)-D-Gal and beta-D-GlcNAc(1,3)[beta-D-GlcNAc(1,6)]-D-Gal are good acceptors for the beta-galactosyltransferase from Ehrlich cells, suggesting that the enzyme may participate in the biosynthesis of i/I structures. In addition, other linear and branched sugars presenting GlcNAc residues at their nonreducing termini also act as acceptors for the enzyme. The activity of Ehrlich cell beta-galactosyltransferase both in the presence and absence of alpha-lactalbumin has been studied using a series of derivatives of Glc and GlcNAc which were substituted at various positions of the pyranose ring. This study has provided a map of the molecular contacts necessary for enzymatic activity in the presence and in the absence of alpha-lactalbumin.  相似文献   

4.
We have characterized the UDP-galactose: alpha-N-acetylgalactosaminide beta 3 galactosyltransferase in human tracheal epithelium using asialo ovine submaxillary mucin as the acceptor. Maximal enzyme activity was obtained at pH 6.0-7.5 and at 20-25 mM MnCl2 and at 2% Triton X-100. Cd2+ could substitute for Mn2+ as the divalent ion cofactor. Spermine, spermidine, putrecine, cadaverine, and poly-L-lysine stimulated the enzyme activity at low (2.5 mM) MnCl2 concentration. The apparent Michaelis constants for N-acetylgalactosamine, asialo ovine submaxillary mucin, and UDP-galactose were 15.5, 1.14, and 1.36 mM, respectively. The enzyme activity was not affected by alpha-lactalbumin. The alpha-N-acetygalactosaminide beta 3 galactosyltransferase was shown to be different from the N-acetylglucosamine galactosyltransferase by acceptor competition studies. The product of galactosyltransferase was identified as Gal beta 1 leads to 3GalNAc alpha Ser (Thr) by (a) isolation of [14C]Gal-GalNAc-H2 after alkaline borohydride treatment of the 14C-labeled product, (b) establishment of the beta-configuration of the newly synthesized glycosidic bond by its complete cleavage by bovine testicular beta-galactosidase, and (c) assignment of the 1 leads to 3 linkage by identification of threosaminitol obtained from the oxidation of the disaccharide with periodic acid followed by reduction with sodium borohydride, hydrolysis in 4 N HCl, and analysis on an amino acid analyzer. The 1 leads to 3 linkage was confirmed by its resistance to jack bean beta-galactosidase and by the presence of a m/e 307 ion fragment and the absence of a m/e 276 ion by gas-liquid chromatography-mass spectrometry analysis. When acid and beta-galactosidase-treated human tracheobronchial mucin was used as the acceptor, 3.3% of the product was found as [14C]Gal-GalNAc-H2. The remainder of the [14C]Gal was found in longer oligosaccharides formed by a different beta-galactosyltransferase. This galactosyltransferase is slightly inhibited by alpha-lactalbumin and stimulated by spermine.  相似文献   

5.
Band-3 glycoprotein was purified from human blood-group-A erythrocyte membranes by selective solubilization and gel chromatography on Sepharose 6B in the presence of sodium dodecyl sulphate. The purified glycoprotein was subjected to hydrazinolysis in order to release the carbohydrate moiety. The released oligosaccharides were N-acetylated and applied to a column of DEAE-cellulose. Most of the band-3 oligosaccharides obtained were found to be free of sialic acids. When this neutral fraction was subjected to gel chromatography on a column of Sephadex G-50, two broad peaks were observed indicating that the band-3 glycoprotein was heterogeneous in the size of the oligosaccharide moieties. All fractions from gel chromatography were found to contain galactose, mannose, N-acetylglucosamine and fucose. The higher-molecular-weight (mol.wt. 3000-8000) peak consisted of fucose, mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine in a molar proportion of 1.6:3.0:8.4:10.5:0.2. Most of these oligosaccharides were digested with a mixture of beta-galactosidase and beta-N-acetylhexosaminidase after alpha-L-fucosidase treatment to give a small oligosaccharide with the structure alpha Man2-beta Man-beta GlcNAc-GlcNAc. Methylation studies and limited degradation by nitrous acid deamination showed that the oligosaccharides contained the repeating disaccharide Gal beta 1----4GlcNAc beta 1----3, with branching points at C-6 of some of the galactose residues. These results indicate that a major portion of the band-3 oligosaccharide has a common core structure, with heterogeneity in the numbers of the repeating disaccharides, and contains fucose residues both in the peripheral portion and in the core portion. Haemagglutination tests were also carried out to determine the blood-group specificities of the glycoprotein and the results demonstrated the presence of both blood-group-H and I antigenic activities.  相似文献   

6.
Galactosyltransferase catalyzes transfer of galactose from UDP-galactose to glucose or N-acetylglucosamine with resultant formation of galactosides and UDP. In this new assay galactosyltransferase activity is measured by determining UDP by isocratic high-performance liquid chromatography on an amino-bonded column monitored spectrophotometrically. Concurrently, unreacted UDP-galactose and breakdown products arising from UDP-galactose (UMP and uridine) are also determined. The new technique does not require radioactive substrates, permits usage of saturating concentrations of UDP-galactose, and provides monitoring of side reactions.  相似文献   

7.
The HF treatment of teichoic acid-glycopeptide complexes isolated from lysozyme digests of Bacillus coagulans AHU 1366 cell walls gave a disaccharide, glucosyl beta (1 leads to 4)N-acetylglucosamine, along with dephosphorylated repeating units of the teichoic acid chain, galactosyl alpha (1 leads to 2) glycerol. Mild alkali treatment of the complexes yielded the disaccharide linked to glycopeptide, whereas direct heating of the cell walls at pH 2.5 yielded the same disaccharide linked to teichoic acid. The Smith degradation of the complexes revealed that the galactose residue is a component of backbone chain. Thus it is concluded that this disaccharide is involved in the linkage region between poly(galactosylglycerol phosphate) and peptidoglycan in cell walls. Membrane-catalyzed synthesis of this disaccharide on a lipid followed by transfer of glycerol phosphate from CDP-glycerol to the disaccharide-linked lipid in the absence or in the presence of UDP-galactose also supports this conclusion.  相似文献   

8.
The frequency of Escherichia coli infection has lead to concerns over pathogenic bacteria in our food supply and a demand for therapeutics. Glycolipids on gut cells serve as receptors for the Shiga-like toxin produced by E. coli. Oligosaccharide moiety analogues of these glycolipids can compete with receptors for the toxin, thus acting as antibacterials. An enzymatic synthesis of the P1 trisaccharide (Galalpha1,4Galbeta1,4GlcNAc), one of the oligosaccharide analogues, was assessed in this study. In the proposed synthetic pathway, UDP-glucose was generated from sucrose with an Anabaena sp. sucrose synthase and then converted with an E. coli UDP-glucose 4-epimerase to UDP-galactose. Two molecules of galactose were linked to N-acetylglucosamine subsequently with a Helicobacter pylori beta-l,4-galactosyltransferase and a Neisseria meningitidis alpha-1,4-galactosyltransferase to produce one molecule of P1 trisaccharide. The four enzymes were coexpressed in a single genetically engineered E. coli strain that was then permeabilized and used to catalyze the enzymatic reaction. P1 trisaccharide was accumulated up to 50 mM (5.4 g in a 200-ml reaction volume), with a 67% yield based on the consumption of N-acetylglucosamine. This study provides an efficient approach for the preparative-scale synthesis of P1 trisaccharide with recombinant bacteria.  相似文献   

9.
To investigate the factors regulating the biosynthesis of poly-N-acetyllactosamine chains containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] in animal cell glycoproteins, we have examined the structures and terminal sequences of these chains in the complex-type asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Cells were grown in medium containing [6-3H]galactose, and radiolabeled glycopeptides were prepared and fractionated by serial lectin affinity chromatography. The glycopeptides containing the poly-N-acetyllactosamine chains in these cells were complex-type tri- and tetraantennary asparagine-linked oligosaccharides. The poly-N-acetyllactosamine chains in these glycopeptides had four different terminal sequences with the structures: I, Gal beta 1,4GlcNAc beta 1,3Gal-R; II, Gal alpha 1,3Gal beta 1,4GlcNac beta 1,3Gal-R; III, Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,3Gal-R; and IV, Sia alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal-R. We have found that immobilized tomato lectin interacts with high affinity with glycopeptides containing three or more linear units of the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] and thereby allows for a separation of glycopeptides on the basis of the length of the chain. A high percentage of the long poly-N-acetyllactosamine chains bound by immobilized tomato lectin were not sialylated and contained the simple terminal sequence of Structure I. In addition, a high percentage of the sialic acid residues that were present in the long chains were linked alpha 2,3 to penultimate galactose residues (Structure III). In contrast, a high percentage of the shorter poly-N-acetyllactosamine chains not bound by the immobilized lectin were sialylated, and most of the sialic acid residues in these chains were linked alpha 2,6 to galactose (Structure IV). These results indicate that there is a relationship in these cells between poly-N-acetyllactosamine chain length and the degree and type of sialylation of these chains.  相似文献   

10.
The substrate specificity of endo-beta-galactosidase of Pseudomonas sp. was found to differ from that of Flavobacterium keratolyticus or Escherichia freundii, based on the following experimental results. The endo-beta-galactosidases from these three bacteria released 6-O-sulfo-GlcNAc beta 1-3Gal as one of the major products from keratan sulfates from different sources. In addition to the sulfated disaccharide, Flavobacterium and Escherichia enzymes produced GlcNAc beta 1-3Gal, which is also an integral repeating unit of keratan sulfate, whereas the Pseudomonas enzyme did not release any non-sulfated disaccharide. Tetrasaccharides were prepared from the teleost skin keratan sulfate by digestion with Pseudomonas enzyme followed by gel filtration on Sephadex G-50 chromatography. A part of the tetrasaccharide fraction was hydrolyzed by Flavobacterium enzyme to produce 6-O-sulfo-GlcNAc beta 1-3Gal and GlcNAc beta 1-3Gal, whereas the fraction was completely resistant to retreatment with the Pseudomonas enzyme. Endo-beta-galactosidases from F. keratolyticus and E. freundii hydrolyzed the internal beta-1,4-galactosyl linkage of various neolacto-type glycosphingolipids to produce glucosylceramides. However, these glycosphingolipids were completely resistant to the Pseudomonas enzyme. These findings clearly show that the sulfation on the N-acetylglucosamine adjacent to galactose in the lactosaminoglycans is essential for expression of the Pseudomonas enzyme, but not for that of the Flavobacterium or Escherichia enzyme.  相似文献   

11.
The nature of the hepatic receptors that bind glycoproteins through fucose at the non-reducing termini of oligosaccharides in glycoproteins has been examined by three different approaches. First, the clearance from blood of intravenously injected glycoproteins was examined in mice with the aid of neoglycoproteins of bovine serum albumin (BSA). The clearance of fucosyl-BSA was rapid and was not strongly inhibited by glycoproteins that inhibit clearance mediated by the galactose or the mannose/N-acetylglucosamine receptors of liver. The clearance of Fuc alpha 1,3(Gal beta 1,4)GlcNAc-BSA (where Fuc is fucose) was inhibited weakly by either Fuc-BSA or Gal beta 1,4GlcNAc-BSA but strongly by a mixture of the two neoglycoproteins, suggesting that its clearance was mediated by hepatic galactose receptors as well as by a fucose-binding receptor. Second, the binding of neoglycoproteins to a membrane fraction of mouse liver was examined. Fuc-BSA binding to membranes was Ca2+ dependent but was not inhibited by glycoproteins that would inhibit the galactose or the mannose/N-acetylglucosamine receptors. In addition, the binding of Fuc-BSA and Gal beta 1,4GlcNAc-BSA differed as a function of pH, in accord with binding of Fuc-BSA through fucose-specific hepatic receptors. Finally, the binding of neoglycoproteins to the pure galactose lectin from rat liver was examined. Neither Fuc-BSA nor Fuc alpha 1,2Gal beta 1,4GlcNAc-BSA bound the galactose lectin, although Fuc alpha 1,3(Gal beta-1,4) GlcNAc-BSA bound avidly. Taken together, these studies suggest that a fucose-binding receptor that differs from the galactose and the mannose/N-acetylglucosamine receptors may exist in rat and mouse liver.  相似文献   

12.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

13.
We have recently described the occurrence of integral membrane glycoproteins in rat liver smooth and rough endoplasmic reticulum with O-N-acetylglucosamine facing the cytosolic and luminal sides of the membrane (Abeijon, C., and Hirschberg, C. B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1010-1014). We now report that integral membrane glycoproteins with cytosolic facing O-N-acetylglucosamine also occur in membranes of rat liver Golgi apparatus. This was determined following incubation of vesicles from the Golgi apparatus, which were sealed and of the same membrane topographical orientation as in vivo, with UDP-[14C]galactose and saturating amounts of bovine milk galactosyltransferase. This enzyme does not enter the lumen of the vesicles and specifically catalyzes the addition of galactose, in a beta 1-4 linkage, to terminal N-acetylglucosamine. Under these conditions, galactose was transferred to a glycoprotein of molecular mass of 92 kDa. This protein was insoluble in sodium carbonate, pH 11.5, conditions under which integral membrane proteins remain membrane bound and was insensitive to treatment with peptide:N-glycosidase F. beta Elimination and chromatography showed that radiolabeled galactose was part of a disaccharide which was characterized as Gal beta 1-4GlcNAcitol. This glycoprotein is specific of the Golgi apparatus membrane. Intrinsic membrane glycoproteins with this unusual carbohydrate membrane orientation thus occur in the endoplasmic reticulum and Golgi apparatus of rat liver.  相似文献   

14.
Particulate membrane preparations from K-562 [human CML (chronic-myelogenous-leukaemia)-derived] cells catalyse the transfer of [3H]galactose from UDP-[3H]-galactose and [3H]N-acetylglucosamine from UDP-[3H]N-acetylglucosamine into an endogenous product that on digestion with Pronase yields long-chain glycopeptides (mol.wt. 7000--10 000) called 'erythroglycan'. Incorporation of either labelled sugar increased up to 60 min of incubation time. The labelled erythroglycan was isolated by chromatography on Sephadex G-50 and characterized by digestion with endo-beta-galactosidase from Escherichia freundii, followed by analysis on Bio-Gel P-2 and paper chromatography. This digestion gave the following four products: (1) a disaccharide with the sequence beta GlcNAc-beta Gal; (2) a trisaccharide with the sequence betaGal-betaGlcNAc-beta Gal; (3) a larger oligosaccharide containing galactose and N-acetylglucosamine; and (4) a putative protein-linkage region.  相似文献   

15.
The enzyme which catalyzes the transfer of galactose from UDP-galactose to lactosylceramide (LacCer) was obtained in a 32,000-fold purified and apparently homogeneous form from rat liver by a procedure involving affinity chromatography on UDP-hexanolamine-Sepharose and LacCer-Sepharose. The enzyme is composed of two nonidentical subunits whose apparent molecular weights are 65,000 and 22,000. Methylation and hydrolysis of the product formed by incubation of the enzyme with UDP-galactose and [3H]LacCer yielded 2,3,6-tri-O-methyl-[3H]galactose, indicating that a galactose residue was introduced to position C-4 of the terminal galactose of the LacCer. The product also specifically reacted with monoclonal antibody directed to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). This indicates that the purified enzyme is exclusively alpha 1-4-galactosyltransferase. Studies on substrate specificity indicate that the purified enzyme is highly specific for the synthesis of GbOse3Cer and is clearly distinct from the enzymes responsible for the formation of iGbOse3Cer (Gal alpha 1-3Gal beta 1-4Glc-Cer) and blood group-B substance, which possess alpha 1-3 galactosidic linkages at the nonreducing termini. The enzyme is also distinct from the alpha 1-4-galactosyltransferase which catalyzes the formation of galabiaosylceramide (Gal alpha 1-4Gal beta 1-1Cer) and IV4Gal-nLacOse4 (P1 antigen). These studies represent the first report of the properties of a highly purified alpha-galactosyltransferase catalyzing the transfer of sugar residues to glycolipids.  相似文献   

16.
beta-1,4-galactosyltransferase 1 (beta1,4-GT 1) is localized both in the Golgi complex where it catalyzes the transfer of galactose from UDP-galactose to terminal N-acetylglucosamine forming Galbeta1 --> 4GlcNAc structure, and on the cell surface where it serves as an adhesion molecule. It has previously been reported that the expression of beta1,4-GT 1 was cell-cycle-specific, regulated by cell growth. Transforming growth factor-beta1 (TGF-beta1) could regulate cell G1/S phase transition and modulate cell growth in many types of cells. In this study, we introduced the antisense-TGF-beta1 into SMMC-7721 cell, a human hepatocarcinoma cell line, for blocking its intrinsic TGF-beta1 expression, and changing its cell-cycle, and then analyzed the gene expression of beta1,4-GT 1 together with the beta1,4-GT activity. The result showed that the antisense-TGF-beta1 transfected SMMC-7721 cells (AST/7721) were growth enhanced, with more cells in S phase and less cells in G2/M phase compared with the mock transfected cells (pcDNA3/7721). At the same time, it was found that the gene expression of beta1,4-GT 1 in AST/7721 was decreased to one fifth that of pcDNA3/7721, and the cell surface beta1,4-GT activity was reduced to one fifth of the control, while the total activity of beta1,4-GT was decreased to one half that of the control. The results indicate that suppression of TGF-beta1 expression resulted in change of cell-cycle together with the decreased gene expression of beta1,4-GT 1 and beta1,4-GT activity in human hepatocarcinoma cells.  相似文献   

17.
Keratan sulfate glycosaminoglycans are among the most abundant carbohydrate components of the cornea and are suggested to play an important role in maintaining corneal extracellular matrix structure. Keratan sulfate carbohydrate chains consist of repeating N-acetyllactosamine disaccharides with sulfation on the 6-O positions of N-acetylglucosamine and galactose. Despite its importance for corneal function, the biosynthetic pathway of the carbohydrate chain and particularly the elongation steps are poorly understood. Here we analyzed enzymatic activity of two glycosyltransferases, beta1,3-N-acetylglucosaminyltansferase-7 (beta3GnT7) and beta1,4-galactosyltransferase-4 (beta4GalT4), in the production of keratan sulfate carbohydrate in vitro. These glycosyltransferases produced only short, elongated carbohydrates when they were reacted with substrate in the absence of a carbohydrate sulfotransferase; however, they produced extended GlcNAc-sulfated poly-N-acetyllactosamine structures with more than four repeats of the GlcNAc-sulfated N-acetyllactosamine unit in the presence of corneal N-acetylglucosamine 6-O sulfotransferase (CGn6ST). Moreover, we detected production of highly sulfated keratan sulfate by a two-step reaction in vitro with a mixture of beta3GnT7/beta4GalT4/CGn6ST followed by keratan sulfate galactose 6-O sulfotransferase treatment. We also observed that production of highly sulfated keratan sulfate in cultured human corneal epithelial cells was dramatically reduced when expression of beta3GnT7 or beta4GalT4 was suppressed by small interfering RNAs, indicating that these glycosyltransferases are responsible for elongation of the keratan sulfate carbohydrate backbone.  相似文献   

18.
A metabolic engineering strategy was successfully applied to engineer the UDP-glucose synthesis pathway in E. coli. Two key enzymes of the pathway, phosphoglucomutase and UDP-glucose pyrophosphorylase, were overexpressed to increase the carbon flux toward UDP-glucose synthesis. When additional enzymes (a UDP-galactose epimerase and a galactosyltransferease) were introduced to the engineered strain, the increased flux to UDP-glucose synthesis led to an enhanced UDP-galactose derived disaccharide synthesis. Specifically, close to 20 mM UDP-galactose derived disaccharides were synthesized in the engineered strain, whereas in the control strain only 2.5 mM products were obtained, indicating that the metabolic engineering strategy was successful in channeling carbon flux (8-fold more) into the UDP-glucose synthesis pathway. UDP-sugar synthesis and oligosaccharide synthesis were shown to increase according to the enzyme expression levels when inducer concentration was between 0 and 0.5 mM. However, this dependence on the enzyme expression stopped when expression level was further increased (IPTG concentration was increased from 0.5 to 1 mM), indicating that other factors emerged as bottlenecks of the synthesis. Several likely bottlenecks and possible engineering strategies to further improve the synthesis are discussed.  相似文献   

19.
Sialyltrisaccharides based on β-galactosyldisaccharides were synthesized using β-galactosidase andtrans-sialidase in one pot. Using β-galactosidase fromBacillus circulans andtrans-sialidase fromTrypanosoma cruzi simultaneously, 6 mM sialyltrisaccharides composed of about 95% NeuAcα(2,3)Galβ(1,4)GlcNAc and 5% NeuAcα(2,3)Galβ(1,6)GlcNAc were produced from a reaction mixture containing 25 mM 0-nitrophenyl-β-D-galactopyranoside, 100 mM N-acety lglucosamine and 10 mM p-nitrophenyl-α-D-N-acetylneuraminic acid. One beauty of this reaction was that a secondary hydrolysis of the disaccharide intermediate occurring between the activated galactopyranoside and N-acetylglucosamine was prevented. Using β-galactosidase fromEscherichia coli and the sametrans-sialidase, 15 mM sialyltrisaccharides composed of about 90% NeuAcα(2,3)Galβ(1,6)GlcNAc and 10% NeuAcα(2,3)Galβ (1,4)GlcNAc were produced from a reaction mixture containing 400 mM galactose, 800 mM N-acetylglucosamine and 20 mMp-nitrophenyl-α-D-N-acetylneuraminic acid. In this study, the reverse-galactosylation reaction between galactose and N-acetylglucosamine was dominant since the disaccharide intermediate mainly resulted in the sialylated product.  相似文献   

20.
The soluble galactosyltransferase of human plasma catalysed the transfer of galactose from UDP-galactose to high- and low-molecular-weight derivatives of N-acetylglucosamine, forming a beta-1-4 linkage. The enzyme was purified by using (NH4)2SO4 precipitation and affinity chromatography on an alpha-lactalbumin-Sepharose column. The galactosyltransferase was maximally bound to this column in the presence of N-acetylglucosamine, and the enzyme was eluted by omitting the amino sugar from the developing buffer. The molecular weight of the enzyme was estimated to be 85000 by gel filtration. The assay conditions for optimum enzymic activity was 30 degrees C and pH7.5. Mn2+ ion was found to be an absolute requirement for transferase activity. The Km for Mn2+ was 0.4 mM and that for the substrate, UDP-galactose, was 0.024 mM. The Km for the acceptors was 0.21 mM for alpha1-acid glycoprotein and 3.9 mM for N-acetylglucosamine. In the presence of alpha-lactalbumin, glucose became a good acceptor for the enzyme and had a Km value of 2.9 mM. Results of the kinetic study indicated that the free enzyme reacts with Mn2+ under conditions of thermodynamic equilibrium, and the other substrates are added sequentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号