首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Australian stocks and flows framework (ASFF) is a tool for establishing a coherent historical picture of the Australian physical economy and for testing long-term future scenarios (up to 2050 or even 2100). These scenarios can be used to investigate the long-term physical consequences of current and future choices affecting the physical dimensions of sustainability. In this article we describe the methodology for and construction of a key component of ASFF: a dynamic physical input-output model of material flows in the basic industries.
The materials model in ASFF describes physical flows and their transformation by industrial processes. The model's structure permits scenario analysis of long-term technological change by permitting time-varying input-output coefficients and vintage models of capital stocks. As a consequence, the model contains a large number of parameters, which can be left at default settings or adjusted as the modeler sees fit, in order to simulate the widest possible range of physically realizable scenarios. The materials model is built using a methodology that integrates bottom-up process analysis with top-down statistics on material and energy flows. We present some examples showing how the materials model has been implemented to model Australian heavy industries. Several possibilities for further developing the materials model are also described.  相似文献   

2.
Economic input‐output life cycle assessment (IO‐LCA) models allow for quick estimation of economy‐wide greenhouse gas (GHG) emissions associated with goods and services. IO‐LCA models are usually built using economic accounts and differ from most process‐based models in their use of economic transactions, rather than physical flows, as the drivers of supply‐chain GHG emissions. GHG emissions estimates associated with input supply chains are influenced by the price paid by consumers when the relative prices between individual consumers are different. We investigate the significance of the allocation of GHG emissions based on monetary versus physical units by carrying out a case study of the U.S. electricity sector. We create parallel monetary and mixed‐unit IO‐LCA models using the 2007 Benchmark Accounts of the U.S. economy and sector specific prices for different end users of electricity. This approach is well suited for electricity generation because electricity consumption contributes a significant share of emissions for most processes, and the range of prices paid by electricity consumers allows us to explore the effects of price on allocation of emissions. We find that, in general, monetary input‐output models assign fewer emissions per kilowatt to electricity used by industrial sectors than to electricity used by households and service sectors, attributable to the relatively higher prices paid by households and service sectors. This fact introduces a challenging question of what is the best basis for allocating the emissions from electricity generation given the different uses of electricity by consumers and the wide variability of electricity pricing.  相似文献   

3.
This synthesis article presents an overview of an urban metabolism (UM) approach using mixed methods and multiple sources of data for Los Angeles, California. We examine electric energy use in buildings and greenhouse gas emissions from electricity, and calculate embedded infrastructure life cycle effects, water use and solid waste streams in an attempt to better understand the urban flows and sinks in the Los Angeles region (city and county). This quantification is being conducted to help policy‐makers better target energy conservation and efficiency programs, pinpoint best locations for distributed solar generation, and support the development of policies for greater environmental sustainability. It provides a framework to which many more UM flows can be added to create greater understanding of the study area's resource dependencies. Going forward, together with policy analysis, UM can help untangle the complex intertwined resource dependencies that cities must address as they attempt to increase their environmental sustainability.  相似文献   

4.
The disjunction of ecological and socioeconomic sciences is one of the main obstructions in current human–natural integrated systems research. Therefore, gridded GIS technology is introduced in an attempt to achieve the spatial flow analysis of water pollution in eco-natural systems. With this unified GIS platform, an input–output table and one-dimensional water quality model are chosen to manifest the spatial economic flows and spatial natural flows of water pollution separately. Finally, the comprehensive effect of the spatial circulation of water pollution in eco-natural systems is assessed. A case study of the framework is carried out in the Changzhou District of Taihu Lake, China, and the main results show the following: (1) COD (chemical oxygen demand) direct emissions represent the characteristics of high intensity and clustering in industrial regions; control unit 8 is the largest secondary emissions unit, representing up to 41.79% of the total, whereas the emissions of the primary industry tend to be low intensity and widespread. (2) The gray virtual water flow from the primary industry to other heavy industries (except the chemical industry) is the main flow type; the transfer amount adds up to 2512 t, and the inter-units with the largest occupation of water environment capacity (WEC) upstream to downstream are 8–9, nearly up to 1548 t. (3) Under the interaction of positive and negative functions of economic flows and natural flows, the final effect of pollution transfer may be offset, environmental degradation or environmental improvement. This study could provide a basis for ecological compensation, environmental exteriority and optimization of industrial structure layouts.  相似文献   

5.
Stocks of fixed capital play a vital role in fulfilling basic human needs and facilitating industrial production. Their build‐up requires great quantities of energy and materials, and generates greenhouse gas emissions and other pollution. Capital stocks influence economic production and environmental pollution through their construction and over subsequent decades through their use. We perform an environmental footprint analysis of total consumption, capital investment, and capital consumption in the United States for 2007 and 2012. In 2012, capital consumption accounted for 13%, 19%, and 40% of total carbon, energy, and material footprints, respectively. Housing, federal defense, state and local government education and other services (including household consumption of roads), personal transport fuels, and hospitals are the consumption sectors with largest capital footprints. These sectors provide fundamental needs of shelter, transport, education, and health, underlying the importance of capital services. Endogenizing capital causes the biggest proportional increase to footprints of sectors with low environmental multipliers. This work builds upon existing input‐output models of production and consumption in the United States, and provides a capital‐inclusive database of carbon, energy, and material footprints and multipliers for 2007 and 2012. This article met the requirements for a gold – gold JIE data openness badge described at http://jie.click/badges .  相似文献   

6.
Rapid industry-led growth in East Asia over the past three decades has resulted in deteriorating air and water quality, escalating energy use and attendant increases in greenhouse gas emissions, and other serious environmental concerns. Current efforts to strengthen environmental regulatory institutions are in many cases overridden by the scale effects of urban-industrial growth. We examine policy approaches that support a shift toward an alternative trajectory of economic development that is less energy, materials, and pollution intensive. Given that a large proportion of the capital stock in the developing market economies of Asia has yet to be built, we argue that influencing the energy, materials, and pollution intensity of new industrial investment is both a critical opportunity and a policy imperative. Our research indicates a need for greater integration of environmental, industrial and technology policies within the region. Such policy integration should link reductions in energy, materials and pollution intensity to efforts to upgrade the technology and industrial capability of the developing market economies of East Asia.  相似文献   

7.
In global industry supply chains, environmental sustainability optimization addresses the overall consumption of resources and energy, the reduction of carbon emissions and generated waste to name a few. In the second part of this paper, we apply the sustainability optimization framework developed in part 1 to the European automotive industry supply chain. Numerical experiments based on empirical industry data show the impact of optimization strategies on overall costs and emissions in the industry and the possible long-term development of the industry supply chain including the relocation of production capacities, the choice of transportation modes and the potential change towards lower emission products such as electric vehicles. In addition we demonstrate how the novel optimization strategy of minimizing the time-to-sustainability is applied and how it creates transparency of the feasibility of different sustainability targets, e.g. reduction targets for greenhouse gas emissions. Specifically, the minimum time is determined the industry would need to achieve the pre-defined targets. Related optimization results create new insights and provide decision support for policymakers and industry in developing sustainability strategies and specific targets.  相似文献   

8.
Modern environmental and sustainability policy that acknowledges the linkages between socioeconomic processes and environmental pressures and impacts, and designs policies to decouple economic activity from environmental pressures and impacts, requires a sophisticated and comprehensive knowledge base. The concept of industrial metabolism provides a sound conceptual base, and material flow accounting—including primary material inputs and outflows of waste and emissions—provides a well‐accepted operationalization. Studies presenting a comprehensive material flow account for a national economy are rare, especially for developing countries. Countries such as Lao People's Democratic Republic (Lao PDR or Laos) face dual objectives of improving the material standard of living of their people while managing natural resources sustainably and mitigating adverse environmental impacts from growing resource throughput. Our research fills a knowledge gap, presents a comprehensive account of material inputs and outflows of waste and emissions for the Lao PDR national economy, and applies the accounting approach for a low‐income economy in Asia. We present a material balance for the years 2000 and 2015. For this research, we used data from Lao PDR national statistics and the accounting guidelines of the European Statistical Office (Eurostat), which pioneered the use of material flow data as part of its official statistical reporting. We demonstrate the feasibility of the accounting approach and discuss the robustness of results using uncertainty analysis conducted with statistical approaches commonly used in the field of industrial ecology, including Gauss's law of error propagation and Monte Carlo simulation. We find that the fast‐changing scale and composition of Lao PDR material flows, waste, and emissions presents challenges to the existing policy capacity and will require investment into governance of changed patterns of material use, waste disposal, and emissions. We consider the data analysis sufficiently robust to inform such a change in policy direction.  相似文献   

9.
10.
Healthcare is a critical service sector with a sizable environmental footprint from both direct activities and the indirect emissions of related products and infrastructure. As in all other sectors, the “inside‐out” environmental impacts of healthcare (e.g., from greenhouse gas emissions, smog‐forming emissions, and acidifying emissions) are harmful to public health. The environmental footprint of healthcare is subject to upward pressure from several factors, including the expansion of healthcare services in developing economies, global population growth, and aging demographics. These factors are compounded by the deployment of increasingly sophisticated medical procedures, equipment, and technologies that are energy‐ and resource‐intensive. From an “outside‐in” perspective, on the other hand, healthcare systems are increasingly susceptible to the effects of climate change, limited resource access, and other external influences. We conducted a comprehensive scoping review of the existing literature on environmental issues and other sustainability aspects in healthcare, based on a representative sample from over 1,700 articles published between 1987 and 2017. To guide our review of this fragmented literature, and to build a conceptual foundation for future research, we developed an industrial ecology framework for healthcare sustainability. Our framework conceptualizes the healthcare sector as comprising “foreground systems” of healthcare service delivery that are dependent on “background product systems.” By mapping the existing literature onto our framework, we highlight largely untapped opportunities for the industrial ecology community to use “top‐down” and “bottom‐up” approaches to build an evidence base for healthcare sustainability.  相似文献   

11.
China has more than 1,500 industrial parks, which, collectively, play a crucial role in facilitating industrialization and urbanization. A key characteristic of these parks is that most rely on shareable energy infrastructure, an efficient configuration that can also deliver substantial and sustainable reductions in greenhouse gas (GHG) emissions. This study offers strategies for mitigating GHG emissions from Chinese industrial parks. We focus on extensive data collection for the 106 industrial parks listed in the national demonstration eco‐industrial park (EIP) program. In doing so, we carefully examine the evolution of 608 serviceable energy infrastructure units by vintage year, fuel type, energy output, and technologies of combined heat and power units. We assess direct GHG emissions from both energy infrastructure and the parks, and then identify the features and driving forces of energy infrastructure development in the EIPs. We also offer recommendations for ways to mitigate the GHG emissions from these industrial parks. The energy infrastructure stocks in Chinese EIPs are characterized by heavy coal dependence (87% of capacity) and high ratios of direct GHG emissions versus the total direct emissions of the park (median value: 75.2%). These findings establish a baseline from which both technology and policy decisions can then be made in an informed way.  相似文献   

12.
Due to the increasing global warming in the world, analyzing greenhouse gas emissions is a crucial issue. This study has examined greenhouse gas emissions in Turkey according to energy sector, industrial processes sector, agriculture sector and waste sector. Then, time series analysis models are used to estimate greenhouse gas emissions based on sectors. Models' performances are tested using mean error, mean absolute error and root mean square error. The results show that forecasting models have a good potential to estimate the national greenhouse gas emissions for different sector within a reasonable error. The study results will help organize and estimate the national greenhouse gas emissions inventory.  相似文献   

13.
In global industry supply chains, environmental sustainability optimization addresses the overall consumption of resources and energy, the reduction of carbon emissions and generated waste to name a few. In this paper, we propose a holistic sustainability optimization framework for strategic network design of industry supply chains under consideration of economic, social as well as ecologic objectives. The framework is flexible to incorporate multiple sustainability indicators, alternative sustainability optimization strategies as well as a variety of internal and external industry-specific factors which impact the sustainability of the entire industry supply chain in the long-term. The core of the framework is an end-to-end closed-loop value chain model consisting of process, transport and product-in-use modules. For the first time, the product-in-use impact (“use” vs. “make”) is integrated in one network design approach. In addition, the model fully closes the loop from sourcing of raw materials via manufacturing towards reverse value chain steps such as disposal and recycling. Finally, we propose the minimize-time-to-sustainability approach as new optimization strategy for long-term network design problems focusing on minimizing the time, industry supply chain structures need to transform into sustainability steady states for all defined sustainability indicators such as CO2e emissions, costs or social indicators based on defined target values. In part 2 of this paper the application of the optimization framework to the European automotive industry is shown.  相似文献   

14.
Conventional cost‐effectiveness calculations ignore the implications of greenhouse gas (GHG) emissions timing and thus may not properly inform decision‐makers in the efficient allocation of resources to mitigate climate change. To begin to address this disconnect with climate change science, we modify the conventional cost‐effectiveness approach to account for emissions timing. GHG emissions flows occurring over time are translated into an ‘Equivalent Present Emission’ based on radiative forcing, enabling a comparison of system costs and emissions on a consistent present time basis. We apply this ‘Present Cost‐Effectiveness’ method to case studies of biomass‐based electricity generation (biomass co‐firing with coal, biomass cogeneration) to evaluate implications of forest carbon trade‐offs on the cost‐effectiveness of emission reductions. Bioenergy production from forest biomass can reduce forest carbon stocks, an immediate emissions source that contributes to atmospheric greenhouse gases. Forest carbon impacts thereby lessen emission reductions in the near‐term relative to the assumption of biomass ‘carbon neutrality’, resulting in higher costs of emission reductions when emissions timing is considered. In contrast, conventional cost‐effectiveness approaches implicitly evaluate strategies over an infinite analytical time horizon, underestimating nearer term emissions reduction costs and failing to identify pathways that can most efficiently contribute to climate change mitigation objectives over shorter time spans (e.g. up to 100 years). While providing only a simple representation of the climate change implications of emissions timing, the Present Cost‐Effectiveness method provides a straightforward approach to assessing the cost‐effectiveness of emission reductions associated with any climate change mitigation strategy where future GHG reductions require significant initial capital investment or increase near‐term emissions. Timing is a critical factor in determining the attractiveness of any investment; accounting for emissions timing can better inform decisions related to the merit of alternative resource uses to meet near‐, mid‐, and long‐term climate change mitigation objectives.  相似文献   

15.
产业园区温室气体排放清单   总被引:3,自引:0,他引:3  
齐静  陈彬 《生态学报》2015,35(8):2750-2760
温室气体排放所导致的全球气候变化是国际社会长期关注的热点问题,它严重限制了人类社会的发展并威胁着人类的生存。产业园区通常集中了一个区域主要的生产要素与生产能力,也代表着特定产业在该区域的发展水平,理应作为发展低碳经济的基础单元和减少温室气体排放的重要控制点,也可以成为解决区域资源、环境问题的突破口。明确了产业园区温室气体排放的系统边界和内部结构,梳理了产业园区全生命周期温室气体排放行为,综合考虑产业园区能源消耗、工业生产、物质材料消耗、仪器设备投入、废弃物处理处置、景观绿化等过程,建立产业园区温室气体排放核算方法,并对案例园区进行了清单分析。结果表明:案例园区整个生命周期的温室气体排放量为1872177 t CO2-eq,其中运行管理阶段占全生命周期排放的比例最高,为95.35%。建设阶段的温室气体排放总量中建筑材料消耗引起的排放占到96.95%,主要集中在建筑工程、内部装修工程和外部装饰工程3个环节。运行管理阶段电力消耗、热力消耗和污水处理过程的排放量占到总量的98.69%。根据核算及分析结果提出了案例园区在建设和运行管理阶段实现温室气体减排的建议。  相似文献   

16.
The evolution of maize production patterns in Argentina is evaluated over the last 25 years to compare costs, benefits, environmental performance and sustainability as well as to identify the main driving sources and improvement potential. Results from Argentina cropping systems are compared to other systems worldwide in order to put the Argentina results in a broader context. The study focuses on three farming categories: (1) traditional, low-intensity systems, (2) conventional, high-intensity systems, and (3) GMO-based cropping systems. Low input intensity systems include traditional cropping patterns with seed selection by farmers and conventional hybrid seed coupled to plowing and crop-animal rotation techniques; high input intensity systems use conventional hybrid seeds and recommended chemicals, irrigation and machinery with important soil erosion consequences; and GMO-based cropping systems use herbicide resistant transgenic hybrids, pesticides, higher fertilizer rates, and no-till practices. In each of the three cases, input flows are compared to the achieved yield (in mass and income terms) to better understand relative efficiencies and options for improvement. The study of GMO systems required a preliminary investigation of GMO seed production by seed companies, where a large investment in terms of prior knowledge and high-tech laboratory research is required. The assessments used the Emergy Accounting (EMA) approach. EMA includes material, energy, labor, money, and knowledge flows into the assessment and expands its focus over larger time and spatial scales than conventional economic and cumulative energy demand methods. Emergy-based environmental indicators of grain production for high-intensity hybrid and GMO systems both show a lower performance than low-intensity, traditional patterns in terms of resource return, renewability and sustainability. The fraction of renewability in low-intensity systems is between 28% and 63%, while it is between 8% and 26% for high-intensity hybrid and GMO systems. Calculated indicators also show that GMO-based maize production patterns do not guarantee the expected improvement over conventional high-intensity cropping systems or low-intensity systems in terms of performance and sustainability. Strong reliance on nonrenewable resources and technology, as well as role of direct and indirect labor costs are important factors in determining long-term sustainability and environmental stability of maize production systems.  相似文献   

17.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

18.
Many studies have investigated the carbon footprint of households. They rely on consumption-based responsibility and focus on how many emissions are embodied in a product. Here we open a new field by discussing the emissions that individuals enable by providing labor and capital to companies, using the framework of income-based (downstream) responsibility. This perspective focuses on the emissions enabled by providing inputs to production processes, and is relevant for discussion of sustainable work and the carbon impact of investment and financial portfolios. We compute the downstream carbon intensity of primary inputs for 35 industries in France using the multi-regional input–output database EXIOBASE. We provide a detailed picture of enabled emissions, disaggregating those by industry and primary inputs. On average, capital inputs are more carbon intensive than labor inputs. Finally, we couple downstream carbon intensities with an extensive national survey on wages to obtain a distribution of the income-based emissions of employees. Income-based emissions are much more unequally distributed than wages due to the huge variability of carbon intensity across industries: a truck driver enables far more emissions than a social-care worker. Inequalities in emissions do not strongly interact with economic inequality. Yet they are gendered because women work disproportionately in low-carbon-intensive industries such as healthcare. As a result, women contribute less to GHG emissions than their wage share would seem to indicate.  相似文献   

19.
Carbon‐based materials (CBMs) for energetic and material purposes combine biogenic and anthropogenic carbon cycles. In the latter, numerous manufactured products with various in‐use lifespans accumulate as anthropogenic carbon stocks. Understanding the behavior of these stocks is an important requirement to estimate not only future waste amounts, source for secondary raw materials, but also the impacts and effects in carbon emissions and carbon management. Previous models have estimated material stock changes; however, a lack of research in carbon stocks is perceived. Moreover, studies follow in‐use lifespan estimation approaches, such as decay functions, which do not coincide with observed consumption and waste treatment patterns. In the first part of this article, we present a carbon stock‐flow model to analyze inter‐relationships between carbon flows and stocks from raw materials to waste treatment processes considering a consumer perspective, where the dynamics of anthropogenic carbon stocks are completely described. In the second part, we study the pulp and paper industry in Germany under a scenario approach to analyze the behavior, development, and impacts of paper stocks and flows between 2010 and 2040. The model provided coherent results, with industrial data estimating 33.9 million metric tons in 2010 in paper stocks, equivalent to 410 kilograms per person. Consumption per capita and in‐use lifespan of products were identified as the most significant variables in carbon stock building. Model simulations show a sustained growth in stocks for the next 30 years, with increase in waste and carbon emissions. But in combination with recycling and reuse mechanisms and consumption patterns, environmental impacts are reduced.  相似文献   

20.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号