首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Even though 5-fluorouracil (FU) is one of the oldest anticancer drugs, its use in cancer chemotherapy continues to increase. Fluorouracil is a pro-drug that requires intracellular activation to exert its effects. This makes it difficult to associate blood drug concentration with cell toxicity directly, although data from the literature show the existence of such a relationship. The relationship between FU pharmacokinetics and patient response has been explored extensively and reports attest a link between systemic drug exposure and response and survival. This has led to the concept of maximal tolerated exposure, and strategies to achieve this rely on pharmacokinetic follow-up and individual dose adjustment. More than 80% of the administered FU dose is eliminated by catabolism through dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme. Dihydropyrimidine dehydrogenase activity is found in most tissues but is highest in the liver. Peripheral blood mononuclear cells (PBMC) are used to monitor clinically DPD activity. A significant, but weak correlation between PBMC and liver DPD activity has been observed. The relationship between PBMC–DPD activity and FU systemic clearance is weak (r2=0.10); thus, simply determining PBMC–DPD is not sufficient to predict accurately FU clearance. Population pharmacokinetic analysis identified patient co-variables that influence FU clearance; drug kinetics is significantly reduced by increased age, high serum alkaline phosphatase, length of drug infusion, and low PBMC–DPD. Autoregulation of FU metabolism also is suggested; inhibition of DPD activity was observed after FU administration in both colorectal cancer patients and an animal model. Circadian rhythmicity in DPD activity is suggested from both human and animal investigations. In patients receiving protracted low dose 5-FU infusion, the circadian rhythm in FU plasma concentration peaks at 11:00h and is lowest at 23:00h, on average. The inverse relationship observed between the circadian profile of FU plasma concentration and PBMC–DP activity in these same patients suggests a link between DPD activity and FU pharmacokinetics. The impact of the biological time of drug administration was also studied with short venous infusions; clearance was 70% greater at 13:00h than at 01:00h. Similarly, peak drug concentration occurred in the first half of the night in patients receiving constant rate 5-FU infusion for 2–5 d. Several studies describe wide interindividual variation in the timing of the peak and trough of the 24h rhythm in DPD activity. The rational for FU chronomodulated therapy has been the circadian rhythm in host drug tolerance, which is greatest during the night time when the proliferation of normal target tissue is least. A randomized study of chronomodulated FU therapy with maximal delivery rate at 04:00h was shown clearly to be significantly more effective and less toxic than control flat FU therapy. Future research must focus on easy-to-obtain markers of specific rhythms to individualize the chronomodulated FU delivery.  相似文献   

2.
In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3–15N2–5FU) was used as an internal standard. 5FU was measured within a single analytical run of 16 min with a lower limit of detection of 0.05 μM. The intra-assay variation and inter-assay variation of plasma with added 5FU (1 μM, 10 μM, 100 μM) was less then 6%. Recoveries of the added 5FU in plasma were > 97%. Analysis of the 5FU levels in plasma samples from patients with the HPLC tandem mass spectrometry method and a HPLC-UV method yielded comparable results (r2 = 0.98). Thus, HPLC with electrospray ionization tandem mass spectrometry allows the rapid analysis of 5FU levels in plasma and could, therefore, be used for therapeutic drug monitoring.  相似文献   

3.
5-Fluorouracil (5-FU) is a commonly used anti-cancer drug with notable activity in clinical practice, yet it causes significant unpredictable and often serious toxicity. Both 5-FU and uracil (U) are catabolised by dihydropyrimidine dehydrogenase (DPD) to form dihydrofluorouracil (FUH(2)) and dihydrouracil (UH(2)), respectively. A means of predicting toxicity before treatment would be more valuable. Variations in dihydropyrimidine dehydrogenase (DPD) activity between patients are at least partly responsible for variable toxicity. Measurement of the UH(2) to U ratio may be a measure of pyrimidine catabolism and thus be utilised to predict subsequent toxicity. We have developed an efficient extraction and detection method using HPLC for the simultaneous measurement of UH(2) and U in plasma. A single C(18) Spherisorb ODS2 (25 cm) column using isocratic elution was utilised. U, UH(2) and the internal standard 4-chlorouracil were detected at wavelengths of 257, 220, and 268 nm, respectively. The chromatographic run time was 45 min which is half that of other methods. The detection limit was 0.02 microM for U and 0.1 microM for UH(2) using only 0.5 ml of plasma for both compounds. The basal plasma concentrations of U and UH(2) in 23 individuals ranged from 0.025 to 0.27 microM and 0.4-1.7 microM, respectively. This simple method may permit the assessment of pyrimidine catabolism, and therefore allow prediction of the toxicities associated with the use of fluorinated pyrimidines.  相似文献   

4.
In this article, we describe a fast and specific method to measure 5FU with HPLC tandem-mass spectrometry. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled 5FU (1,3-15N2-5FU) was used as an internal standard. 5FU was measured within a single analytical run of 16 min with a lower limit of detection of 0.05 microM. The intra-assay variation and inter-assay variation of plasma with added 5FU (1 microM, 10 microM, 100 microM) was less then 6%. Recoveries of the added 5FU in plasma were > 97%. Analysis of the 5FU levels in plasma samples from patients with the HPLC tandem mass spectrometry method and a HPLC-UV method yielded comparable results (r2 = 0.98). Thus, HPLC with electrospray ionization tandem mass spectrometry allows the rapid analysis of 5FU levels in plasma and could, therefore, be used for therapeutic drug monitoring.  相似文献   

5.
Even though 5-fluorouracil (FU) is one of the oldest anticancer drugs, its use in cancer chemotherapy continues to increase. Fluorouracil is a pro-drug that requires intracellular activation to exert its effects. This makes it difficult to associate blood drug concentration with cell toxicity directly, although data from the literature show the existence of such a relationship. The relationship between FU pharmacokinetics and patient response has been explored extensively and reports attest a link between systemic drug exposure and response and survival. This has led to the concept of maximal tolerated exposure, and strategies to achieve this rely on pharmacokinetic follow-up and individual dose adjustment. More than 80% of the administered FU dose is eliminated by catabolism through dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme. Dihydropyrimidine dehydrogenase activity is found in most tissues but is highest in the liver. Peripheral blood mononuclear cells (PBMC) are used to monitor clinically DPD activity. A significant, but weak correlation between PBMC and liver DPD activity has been observed. The relationship between PBMC-DPD activity and FU systemic clearance is weak (r2=0.10); thus, simply determining PBMC-DPD is not sufficient to predict accurately FU clearance. Population pharmacokinetic analysis identified patient co-variables that influence FU clearance; drug kinetics is significantly reduced by increased age, high serum alkaline phosphatase, length of drug infusion, and low PBMC-DPD. Autoregulation of FU metabolism also is suggested; inhibition of DPD activity was observed after FU administration in both colorectal cancer patients and an animal model. Circadian rhythmicity in DPD activity is suggested from both human and animal investigations. In patients receiving protracted low dose 5-FU infusion, the circadian rhythm in FU plasma concentration peaks at 11:00h and is lowest at 23:00h, on average. The inverse relationship observed between the circadian profile of FU plasma concentration and PBMC-DP activity in these same patients suggests a link between DPD activity and FU pharmacokinetics. The impact of the biological time of drug administration was also studied with short venous infusions; clearance was 70% greater at 13:00h than at 01:00h. Similarly, peak drug concentration occurred in the first half of the night in patients receiving constant rate 5-FU infusion for 2-5 d. Several studies describe wide interindividual variation in the timing of the peak and trough of the 24h rhythm in DPD activity. The rational for FU chronomodulated therapy has been the circadian rhythm in host drug tolerance, which is greatest during the night time when the proliferation of normal target tissue is least. A randomized study of chronomodulated FU therapy with maximal delivery rate at 04:00h was shown clearly to be significantly more effective and less toxic than control flat FU therapy. Future research must focus on easy-to-obtain markers of specific rhythms to individualize the chronomodulated FU delivery.  相似文献   

6.
Dihydropyrimidine dehydrogenase (DPD) is a rate‐limiting enzyme of 5‐fluorouracil (5‐FU) catabolism. Glutathione (GSH) is a tripeptide involved in platinum complex detoxification. This study explored the circadian rhythms of DPD activity and GSH concentration in the peripheral blood of 16 patients with histologically proven nasopharyngeal carcinoma (NPC) in order to guide the establishment of chronotherapeutic schedules for this cancer. DPD activity and GSH concentration were determined by high performance liquid chromatography (HPLC). Both variables displayed significant circadian rhythms (Cosinor analysis: p=0.009 and 0.012, respectively). Peak DPD activity occurred at about 02:30 h; whereas, peak GSH concentration occurred around 12:40 h. The differences between the peak and nadir mean values were 25.5% and 38.7%, respectively. The study showed that the circadian rhythms in DPD activity and GSH concentration in Chinese NPC are similar to those reported for western patients with colorectal cancer, despite the differences in race and kinds of cancer. These findings imply that the chronotherapeutic schedule of 5‐FU and platinum used to treat European colorectal cancer patients probably is applicable to Chinese NPC patients.  相似文献   

7.
8.
5-Fluorouracil (5FU) and capecitabine are two of the most frequently prescribed chemotherapeutic drugs for the treatment of patients with cancer. Administration of test doses of 5FU to eight patients heterozygous for the IVS14+1G > A mutation and five control patients showed that the AUC and clearance were weak parameters with respect to the identification of patients with a DPD deficiency. However, highly significant differences were observed for the terminal half life of 5FU between DPD patients and controls. Thus, a DPD deficiency could be predicted from 5FU blood concentrations measured after the administration of a test dose of 5FU.  相似文献   

9.
5-Fluorouracil (5FU) and capecitabine are two of the most frequently prescribed chemotherapeutic drugs for the treatment of patients with cancer. Administration of test doses of 5FU to eight patients heterozygous for the IVS14+1G > A mutation and five control patients showed that the AUC and clearance were weak parameters with respect to the identification of patients with a DPD deficiency. However, highly significant differences were observed for the terminal half life of 5FU between DPD patients and controls. Thus, a DPD deficiency could be predicted from 5FU blood concentrations measured after the administration of a test dose of 5FU.  相似文献   

10.
Dihydropyrimidine dehydrogenase (DPD) plays a pivotal role in the metabolism of 5-fluorouracil (5FU). In patients treated with capecitabine or 5FU combined with other chemotherapeutic drugs, DPD activity in peripheral blood mononuclear cells was increased in patients experiencing grade I/II neutropenia. In contrast, decreased DPD activity proved to be associated with grade I/II dermatological toxicity, including hand-foot syndrome. Thus, patients with a low-normal or high-normal DPD activity proved to be at risk of developing mild toxicity upon treatment with 5FU-based chemotherapy, demonstrating the important role of DPD in the etiology of toxicity associated with 5FU and the catabolites of 5FU.  相似文献   

11.
12.
Dihydropyrimidine dehydrogenase (DPD) plays a pivotal role in the metabolism of 5-fluorouracil (5FU). In patients treated with capecitabine or 5FU combined with other chemotherapeutic drugs, DPD activity in peripheral blood mononuclear cells was increased in patients experiencing grade I/II neutropenia. In contrast, decreased DPD activity proved to be associated with grade I/II dermatological toxicity, including hand-foot syndrome. Thus, patients with a low-normal or high-normal DPD activity proved to be at risk of developing mild toxicity upon treatment with 5FU-based chemotherapy, demonstrating the important role of DPD in the etiology of toxicity associated with 5FU and the catabolites of 5FU.  相似文献   

13.
Dihydropyrimidine dehydrogenase (DPD) catalyzes the reduction of the naturally occurring pyrimidines, uracil and thymine, and the fluoropyrimidine anticancer drug, 5-fluorouracil (FUra) to 5,6-dihydropyrimidines. Previous studies have demonstrated that cancer patients who are DPD deficient exhibit severe toxicity (including death) following treatment with FUra. To date, the direct measurement of DPD enzyme activity has been the only reliable method to identify DPD deficient cancer patients. We now report a semi-automated radioassay for measuring DPD activity in human peripheral lymphocytes. Following incubation of lymphocyte cytosol (at a fixed protein concentration of 200 μg) with [6-14C]FUra at timepoints ranging from 0 to 30 min, samples are ethanol precipitated, filtered and analyzed by HPLC. Determination of radioactivity is accomplished using an in-line flow scintillation analyzer with automatic quantitation of peaks. This method provides the first specific assay for DPD enzyme activity which is rapid, reproducible and sensitive enough to be used in the routine screening of cancer patients for DPD deficiency prior to treatment with FUra.  相似文献   

14.
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil and thymine, as well as of the widely used chemotherapeutic drug 5-fluorouracil (5FU). Analysis of the DPD gene ( DPYD ) in two patients presenting with complete DPD deficiency and the parents of an affected child showed the presence of three novel mutations, including one splice site mutation IVS11 + 1G-->T and the missense mutations 731A-->C (E244V) and 1651G-->A (A551T). The G-->T mutation in the invariant GT splice donor site flanking exon 11 (IVS11 + 1G-->T) created a cryptic splice site within exon 11. As a consequence, a 141-bp fragment encoding the aminoacid residues 400-446 of the primary sequence of the DPD protein was missing in the mature DPD mRNA. Analysis of the crystal structure of pig DPD suggested that the E244V mutation might interfere with the electron flow between NADPH and the pyrimidine binding site of DPD. The A551T point mutation might prevent binding of the prosthetic group FMN and affect folding of the DPD protein. The identification of these novel mutations in DPYD will allow the identification of patients with an increased risk of developing severe 5FU-associated toxicity.  相似文献   

15.
Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21–23 was observed. In five patients a deep intronic mutation c.1129–5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129–5967 to c.1129–5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129–5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959–51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129–5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129–5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing.  相似文献   

16.
A non‐radioactive method to determine 5‐Fluorouracil (5FU) incorporation into DNA has been developed. Isolated DNA was enzymatically degraded to bases and the resulting 5FU was measured with standard gas‐chromatography coupled to mass spectrometry (GC‐MS) and compared with that of radioactive 5FU in a cell line. Incorporation into DNA of the murine Colon 26‐B tumor treated with maximal tolerated doses of 5FU and fluorodeoxyuridine (FUdR) was maximal after 2 hour and was 15.4 and 71.0 fmol/µg DNA, respectively. After a plateau for about 3 days a decrease was observed to ± 2 fmol/µg DNA after 10 days. The assay is very sensitive and reproducible and can be used in a clinical setting.  相似文献   

17.
The pyridinium cross-links pyridinoline (PYD) and deoxypyridinoline (DPD) are established markers of bone resorption measured in blood and urine and are used to investigate bone metabolism and manage bone diseases. Unfortunately, the currently observed interlaboratory variability caused by inconsistent assay calibration limits the optimal use of these markers. A high-performance liquid chromatography (HPLC)-based assay was developed using synthetic PYD and DPD as calibrators to analyze free and total PYD and DPD in urine. The spectroscopic characteristics of the synthetic calibrators were identical to those of calibrators isolated from bone. The mean intraassay variabilities of the HPLC method were 4.1 and 3.8%, respectively, for total DPD and PYD and 9.8 and 9.5%, respectively, for free DPD and PYD. The mean interassay variabilities were 9.1 and 8.2% for total DPD and PYD and 8.6 and 7.0% for free DPD and PYD, respectively. The mean recoveries were 98.1% for total DPD, 100.8% for total PYD, 98.6% for free DPD, and 94.9% for free PYD. The method exhibits a good correlation with a commercial immunoassay and with other HPLC assays currently used in hospital laboratories.  相似文献   

18.
A non-radioactive method to determine 5-Fluorouracil (5FU) incorporation into DNA has been developed. Isolated DNA was enzymatically degraded to bases and the resulting 5FU was measured with standard gas-chromatography coupled to mass spectrometry (GC-MS) and compared with that of radioactive 5FU in a cell line. Incorporation into DNA of the murine Colon 26-B tumor treated with maximal tolerated doses of 5FU and fluorodeoxyuridine (FUdR) was maximal after 2 hour and was 15.4 and 71.0 fmol/microg DNA, respectively. After a plateau for about 3 days a decrease was observed to +/- 2 fmol/microg DNA after 10 days. The assay is very sensitive and reproducible and can be used in a clinical setting.  相似文献   

19.
Ftorafur (FT), an oral prodrug of 5-FU, is part of UFT and S1, two oral prodrugs widely used in digestive tract cancer. We set up a liquid chromatography tandem mass spectrometry (LC/MS-MS) method, chosen for its specificity of detection, for simultaneously measuring in human plasma FT, 5-FU and 5-FUH2. Separation was performed on a Hypercarb column. Linearity, precision and accuracy were validated in the concentration range studied for each compound. This simple and reliable LC/MS-MS method allows specific, sensitive and reproducible quantification of FT, 5-FU and FUH2 in human plasma and can be applied to further pharmacokinetic studies in patients treated with FT-based prodrugs.  相似文献   

20.
The efficacy of the chemotherapeutic drug 5′-fluorouracil is reduced by catabolism to 2′-fluoro-β-alanine (FBAL), a three-step reaction in which dihydropyrimidine dehydrogenase (DPD) catalyzes the rate-limiting step. To study in vitro DPD activity, we developed and validated an isocratic, reverse-phase HPLC method to detect and quantify FBAL without using multiple columns or radiolabeled substrates. Pre-column derivatization of FBAL was performed using o-phthalaldehyde in the presence of two sulfur donors, ethanthiol or β-mercaptoethanol, and the resulting products assayed. Calibration curves were linear over a range of 10–200 μg/ml and the method was successfully applied to the examination of DPD activity in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号