首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Toll-like receptors (TLRs) play a central role in innate immunity. TLRs are membrane glycoproteins and contain leucine rich repeat (LRR) motif in the ectodomain. TLRs recognize and respond to molecules such as lipopolysaccharide, peptidoglycan, flagellin, and RNA from bacteria or viruses. The LRR domains in TLRs have been inferred to be responsible for molecular recognition. All LRRs include the highly conserved segment, LxxLxLxxNxL, in which "L" is Leu, Ile, Val, or Phe and "N" is Asn, Thr, Ser, or Cys and "x" is any amino acid. There are seven classes of LRRs including "typical" ("T") and "bacterial" ("S"). All known domain structures adopt an arc or horseshoe shape. Vertebrate TLRs form six major families. The repeat numbers of LRRs and their "phasing" in TLRs differ with isoforms and species; they are aligned differently in various databases. We identified and aligned LRRs in TLRs by a new method described here.

Results

The new method utilizes known LRR structures to recognize and align new LRR motifs in TLRs and incorporates multiple sequence alignments and secondary structure predictions. TLRs from thirty-four vertebrate were analyzed. The repeat numbers of the LRRs ranges from 16 to 28. The LRRs found in TLRs frequently consists of LxxLxLxxNxLxxLxxxxF/LxxLxx ("T") and sometimes short motifs including LxxLxLxxNxLxxLPx(x)LPxx ("S"). The TLR7 family (TLR7, TLR8, and TLR9) contain 27 LRRs. The LRRs at the N-terminal part have a super-motif of STT with about 80 residues. The super-repeat is represented by STTSTTSTT or _TTSTTSTT. The LRRs in TLRs form one or two horseshoe domains and are mostly flanked by two cysteine clusters including two or four cysteine residue.

Conclusion

Each of the six major TLR families is characterized by their constituent LRR motifs, their repeat numbers, and their patterns of cysteine clusters. The central parts of the TLR1 and TLR7 families and of TLR4 have more irregular or longer LRR motifs. These central parts are inferred to play a key role in the structure and/or function of their TLRs. Furthermore, the super-repeat in the TLR7 family suggests strongly that "bacterial" and "typical" LRRs evolved from a common precursor.  相似文献   

2.
Toll-like receptors (TLRs) are an essential component of the innate immune response to microbial pathogens. TLR3 is localized in intracellular compartments, such as endosomes, and initiates signals in response to virus-derived double-stranded RNA (dsRNA). The TLR3 ectodomain (ECD), which is implicated in dsRNA recognition, is a horseshoe-shaped solenoid composed of 23 leucine-rich repeats (LRRs). Recent mutagenesis studies on the TLR3 ECD revealed that TLR3 activation depends on a single binding site on the nonglycosylated surface in the C-terminal region, comprising H539 and several asparagines within LRR17 to -20. TLR3 localization within endosomes is required for ligand recognition, suggesting that acidic pH is the driving force for TLR3 ligand binding. To elucidate the pH-dependent binding mechanism of TLR3 at the structural level, we focused on three highly conserved histidine residues clustered at the N-terminal region of the TLR3 ECD: His39 in the N-cap region, His60 in LRR1, and His108 in LRR3. Mutagenesis of these residues showed that His39, His60, and His108 were essential for ligand-dependent TLR3 activation in a cell-based assay. Furthermore, dsRNA binding to recombinant TLR3 ECD depended strongly on pH and dsRNA length and was reduced by mutation of His39, His60, and His108, demonstrating that TLR3 signaling is initiated from the endosome through a pH-dependent binding mechanism, and that a second dsRNA binding site exists in the N-terminal region of the TLR3 ECD characteristic solenoid. We propose a novel model for the formation of TLR3 ECD dimers complexed with dsRNA, which incorporates this second binding site.  相似文献   

3.
Toll-like receptors (TLRs) are transmembrane receptors composed of extra cellular leucine rich repeats (LRRs) that identify specific pathogen associated molecular patterns triggering a innate immune cascade. The LRR regions of TLR 1–10 proteins of goat (Capra hircus), sheep (Ovis aries), buffalo (Bubalus bubalis) and bovine (Bos taurus) were modeled using MODELLER 9v7 tool and validated. The similarities and variations of these 10 TLRs extracellular regions of each species were compared using online servers like FATCAT, SSM and SSAP. It was evident that the LRRs of TLRs like 1, 2, 3 and 6 showed structural convergence with <1 % RMSD deviation while TLRs like 5, 7, 8 and 9 had high divergence. Docking analysis showed that TLR 2, 3 and 7 of all the selected four ruminant species were able to bind with their corresponding ligands like Peptidoglycan (PGN), Poly I:C, Resiquimod (R-848) and Imiquimod. However, there were variations in the active site regions, interacting residues and the number of bonded interactions. Variations seen among TLR structures and their ligand binding characteristics is likely to be responsible for species and breed specific genetic resistance observed among species or breeds.  相似文献   

4.
Toll-like receptors (TLRs) mediate microbial pattern recognition in vertebrates. A broad variety of agonists has been attributed to TLR2 and three TLRs, TLR4, TLR2, and TLR5, have been demonstrated to bind microbial products. Distinct agonists might interact with different subdomains of the TLR2 extracellular domain. The TLR2 extracellular domain sequence includes 10 canonical leucine-rich repeat (LRR) motifs and 8-10 additional and potentially functionally relevant LRR-like motifs. Thus, the transfection of TLR2 LRR/LRR-like motif deletion constructs in human embryonic kidney 293 cells and primary TLR2-deficient mouse fibroblasts was performed for analysis of the role of the regarding domains in specific pattern recognition. Preparations applied as agonists were highly purified soluble peptidoglycan, lipoteichoic acid, outer surface protein A from Borrelia burgdorferi, synthetic mycoplasmal macrophage-activating lipoprotein-2, tripalmitoyl-cysteinyl-seryl-(lysyl)3-lysine (P3CSK4), dipalmitoyl-CSK4 (P2-CSK4), and monopalmitoyl-CSK4 (PCSK4) as well as lipopolysaccharide and inactivated bacteria. We found that a block of the N-terminal seven LRR/LRR-like motifs was not involved in TLR2-mediated cell activation by P3CSK4 and P2CSK4 ligands mimicking triacylated and diacylated bacterial polypeptides, respectively. In contrast, the integrity of the TLR2 holoprotein was compulsory for effective cellular recognition of other TLR2 agonists applied, including PCSK4. The formation of a functionally relevant subdomain by a region including the N-terminal seven LRR/LRR-like motifs rather than by single LRRs is suggested by our results. They further imply that TLR2 contains multiple binding domains for ligands that may contribute to the characterization of its promiscuous molecular pattern recognition.  相似文献   

5.
Fish express mammalian-type (M-type) TLRs consisting of leucine-rich repeats (LRRs) and Toll-IL-1R (TIR) homology domain for immunity, whereas invertebrates in deuterostomes appear to have no orthologs of M-type TLRs. Lampetra japonica (lamprey) belongs to the lowest class of vertebrates with little information about its TLRs. We have identified two cDNA sequences of putative TLRs in the lamprey (laTLRs) that contain LRRs and TIR domains. The two laTLRs were 56% homologous to each other, and their TIRs were similar to those of members of the human TLR2 subfamily, most likely orthologs of fish TLR14. We named them laTLR14a and laTLR14b. We raised a rabbit polyclonal Ab against laTLR14b and identified a 85-kDa protein in a human HEK293 transfectant by immunoblotting using the Ab. FACS, histochemical, and confocal analyses showed that laTLR14b is expressed intracellularly in lamprey gill cells and that the overexpressed protein resides in the endoplasmic reticulum of human and fish (medaka) cell lines. Because natural agonists of TLR14 remained unidentified, we made a chimera construct of extracellular CD4 and the cytoplasmic domain of laTLR14. The chimera molecule of laTLR14b, when expressed in HEK293 cells, elicited activation of NF-kappaB and, consequently, weak activation of the IFN-beta promoter. laTLR14b mRNA was observed in various organs and leukocytes. This lamprey species expressed a variable lymphocyte receptor structurally independent of laTLR14 in leukocytes. Thus, the jawless vertebrate lamprey possesses two LRR-based recognition systems, the variable lymphocyte receptor and TLR, and the M-type TLRs are conserved across humans, fish, and lampreys.  相似文献   

6.
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.  相似文献   

7.
A comprehensive survey of channel catfish Toll-like receptors (TLRs) was undertaken following a genomic PCR approach based on degenerate primers. Twenty different TLRs were identified in channel catfish. Channel catfish TLR sequences were characterized by phylogenetic analysis based on their conserved Toll/interleukin-1 receptor domain and by in-depth analysis of leucine-rich repeat (LRR) motifs of the ligand binding extracellular domain (ECD). The catfish have representatives of all the TLR types defined in vertebrates with the exception of TLR6, TLR10, TLR11, TLR12, TLR13, TLR15, TLR23, and TLR24. Additionally, two new types were discovered: TLR25 and TLR26. TLR25 is also present in cyprinids, cichlids, plecoglossids, and adrianichthyids, suggesting its presence early in fish evolution. To date, TLR26 was found only in channel catfish. Like TLR18–23, TLR25 and TLR26 were not found in any other vertebrate classes and appear to be fish specific. Data mining using the catfish TLR sequences revealed that in addition to ictalurids and cyprinids, TLR4 is also present in salmonids. TLR19 and TLR20 were both found in ictalurids, cyprinids, and salmonids, demonstrating a wider range than previously known. The LRR structure within ECDs appeared generally well conserved. TLR7 demonstrated a very high identity to human TLR7 strongly suggesting that ligand specificity maybe conserved. Finally, expression profiling confirmed that most TLRs are widely expressed in a diversity of tissues and revealed marked differences of expression level.  相似文献   

8.
Sarcomeric myosin heavy chains (MyHC) are the major contractile proteins of cardiac and skeletal muscles and belong to class II MyHC. In this study the sequences of nine sarcomeric MyHC isoforms were obtained by combining assembled contigs of the dog genome draft available in the NCBI database. With this information available the dog becomes the second species, after human, for which the sequences of all members of the sarcomeric MyHC gene family are identified. The newly determined sequences of canine MyHC isoforms were aligned with their orthologs in mammals, forming a set of 38 isoforms, to search for the molecular features that determine the structural and functional specificity of each type of isoform. In this way the structural motifs that allow identification of each isoform and are likely determinants of functional properties were identified in six specific regions (surface loop 1, loop 2, loop 3, converter, MLC binding region, and S2 proximal segment).  相似文献   

9.
Toll-like receptors (TLRs) belong to the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) superfamily which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to trigger an immediate defensive response. SIGIRR (single immunoglobulin interleukin-1 receptor-related molecule), another member of the TLR/IL-1R superfamily, acts as a negative regulator of MyD88-dependent TLR signaling. It attenuates the recruitment of MyD88 adaptors to the receptors with its intracellular TIR domain. Thus, SIGIRR is a highly important molecule for the therapy of autoimmune diseases caused by TLRs. So far, the structural mechanism of interactions between SIGIRR, TLRs and adaptor molecules is unclear. To develop a working hypothesis for this interaction, we constructed three-dimensional models for the TIR domains of TLR4, TLR7, MyD88 and SIGIRR based on computational modeling. Through protein–protein docking analysis, we developed models of essential complexes involved in the TLR4 and 7 signaling and the SIGIRR inhibiting processes. We suggest that SIGIRR may exert its inhibitory effect through blocking the molecular interface of TLR4, TLR7 and the MyD88 adaptor mainly via its BB-loop region.  相似文献   

10.
Activation of caspase-1 and subsequent processing and secretion of the pro-inflammatory cytokine IL-1beta is triggered upon assembly of the inflammasome complex. It is generally believed that bacterial lipopolysaccharides (LPS) are activators of the inflammasome through stimulation of Toll-like receptor 4 (TLR4). Like TLRs, NALP3/Cryopyrin, which is a key component of the inflammasome, contains Leucine-Rich-Repeats (LRRs). LRRs are frequently used to sense bacterial components, thus raising the possibility that bacteria directly activate the inflammasome. Here, we show that bacterial peptidoglycans (PGN), but surprisingly not LPS, induce NALP3-mediated activation of caspase-1 and maturation of proIL-1beta. Activation is independent of TLRs because the PGN degradation product muramyl dipeptide (MDP), which is not sensed by TLRs, is the minimal-activating structure. Macrophages from a patient with Muckle-Wells syndrome, an autoinflammatory disease associated with mutations in the NALP3/Cryopyrin gene, show increased IL-1beta secretion in the presence of MDP. The activation of the NALP3-inflammasome by MDP may be the basis of the potent adjuvant activity of MDP.  相似文献   

11.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   

12.
Toll-like receptors (TLRs) have been identified as key sensors of invading microbes by identifying pathogen-associated molecular patterns and activating innate immune responses. Whereas purifying selection has been suggested in mammalian TLR9, evolutionary features of TLR9 in teleosts have not been investigated in detail. We therefore analysed TLR9 DNA sequences of eight teleost species, including zebrafish (Danio rerio), Japanese flounder (Paralichthys olivaceus), pufferfish (Takifugu rubripes), and five seabreams. Eleven sites subjected to positive selection were identified using the codon-substitution models of PAML 3.15. Ten of these 11 sites were found to be associated with leucine-rich repeats (LRRs). Seven of these 10 positively selected sites were associated with the convex surface of the LRR solenoids, leading to variations of the structures of the LRRs possibly by the introduction of flexibility into the LRR solenoids. The positive selection of LRRs in TLR9 may indicate the adaptation of teleosts to different oligodeoxynucleotides present in different bacterial species.  相似文献   

13.
Toll-like receptors (TLRs) that initiate an innate immune response contain an extracellular leucine rich repeat (LRR) domain and an intracellular Toll IL-receptor (TIR) domain. There are fifteen different TLRs in vertebrates. The LRR domains, which adopt a solenoid structure, usually have higher rates of evolution than do the TIR globular domains. It is important to understand the molecular evolution and functional roles of TLRs from this standpoint. Both pairwise genetic distances and Ka/Ks's (the ratios between non synonymous and synonymous substitution rates) were compared between the LRR domain and the TIR domain of 366 vertebrate TLRs from 96 species (from fish to primates). In fourteen members (TLRs 1, 2, 3, 4, 5, 6, 7, 8, 9, 11/12, 13, 14, 21, and 22/23) the LRR domains evolved significantly more rapidly than did the corresponding TIR domains. The evolutionary rates of the LRR domains are significantly different among these members; LRR domains from TLR3 and TLR7 from primates to fishes have the lowest rate of evolution. In contrast, the fifteenth member, TLR10, shows no significant differences; its TIR domain is not highly conserved. The present results suggest that TLR10 may have a different function in signaling from those other members and that a higher conservation of TLR3 and TLR7 may reflect a more ancient mechanism and/or structure in the innate immune response system. Gene conversions are suggested to have occurred in platypus TLR6 and TLR10. This study provides new insight about structural and functional diversification of vertebrate TLRs.  相似文献   

14.
The Toll/interleukin-1 receptor (TIR) domain is a highly conserved signaling domain found in the intracellular regions of Toll-like receptors (TLRs), in interleukin-1 receptors, and in several cytoplasmic adaptor proteins. TIR domains mediate receptor signal transduction through recruitment of adaptor proteins and play critical roles in the innate immune response and inflammation. This work presents the 2.2A crystal structure of the TIR domain of human TLR10, revealing a symmetric dimer in the asymmetric unit. The dimer interaction surface contains residues from the BB-loop, DD-loop, and alphaC-helix, which have previously been identified as important structural motifs for signaling in homologous TLR receptors. The interaction surface is extensive, containing a central hydrophobic patch surrounded by polar residues. The BB-loop forms a tight interaction, where a range of consecutive residues binds in a pocket formed by the reciprocal BB-loop and alphaC-helix. This pocket appears to be well suited for binding peptide substrates, which is consistent with the notion that peptides and peptide mimetics of the BB-loop are inhibitors for TLR signaling. The TLR10 structure is in good agreement with available biochemical data on TLR receptors and is likely to provide a good model for the physiological dimer.  相似文献   

15.
Guanylate cyclase C (GC-C), a member of the membrane-bound GC family, consists of an extracellular domain (ECD) and an intracellular domain, which are connected by a single-transmembrane region. GC-C is a receptor protein, i.e. specifically stimulated by the endogenous peptides guanylin, uroguanylin, lymphoguanylin, and the exogenous peptide heat-stable enterotoxin (ST(a)), secreted by pathogenic Escherichia coli and acting on the intestinal brush border membranes. The binding of these peptide ligands to the ECD of GC-C results in the synthesis of cyclic GMP in cells, which, in turn, regulates a variety of intracellular physiologic processes. As the cloning of GC-C, its physiologic functions of each domain have been vigorously investigated. The structural characterization of the ligand-binding domain of the receptor promises to provide important clues for better understanding of the mechanisms of receptor recognition and activation. Recently, structural data for each domain of membrane-bound GCs and related proteins has become available. Coupling information obtained from such work and validation of structure-function relationships of GC-C and its ligands should allow for three-dimensional mapping of their interaction site in detail. Our approach to this issue involved designing photoaffinity-labeling ST(a) analogs, capable of binding covalently to the ligand-binding region of the ECD of GC-C. The photoaffinity-labeling ligand was used to covalently label a soluble form of the recombinant ECD protein. Mass spectrometric analyses of an endoproteinase digest of the ECD revealed that the ligand specifically bound to a narrow region contained in the membrane-proximal subdomain of the ECD of GC-C. These results will enable us to identify the possible binding motifs within the ligand-binding domain by computer modeling. In this review, we summarize the available data on the recognition mechanism between ST(a) and GC-C at the molecular level.  相似文献   

16.
Toll样受体(Toll-like receptors,TLRs)是介导天然免疫和获得性免疫的病原模式识别受体(Pattern recognition receptor,PRRs),能识别表达在病原微生物上高度保守的病原相关分子模式(Pathogen associated molecular patterns,PAMPs),并通过一定的信号转导途径引起核内相关基因的表达,启动和调节机体的免疫反应。  相似文献   

17.
The membrane-bound Toll-like receptors (TLRs) trigger innate immune responses after recognition of a wide variety of pathogen-derived compounds. Despite the wide range of ligands recognized by TLRs, the receptors share a common structural framework in their extracellular, ligand-binding domains. These domains all adopt horseshoe-shaped structures built from leucine-rich repeat motifs. Typically, on ligand binding, two extracellular domains form an "m"-shaped dimer sandwiching the ligand molecule bringing the transmembrane and cytoplasmic domains in close proximity and triggering a downstream signaling cascade. Although the ligand-induced dimerization of these receptors has many common features, the nature of the interactions of the TLR extracellular domains with their ligands varies markedly between TLR paralogs.  相似文献   

18.
Toll-like receptors (TLRs) 3, 7, 8, and 9 are localized to intracellular compartments where they encounter foreign or self nucleic acids and activate innate and adaptive immune responses. The endoplasmic reticulum (ER)-resident membrane protein, UNC93B1, is essential for intracellular trafficking and endolysosomal targeting of TLR7 and TLR9. TLR8 is phylogenetically and structurally related to TLR7 and TLR9, but little is known about its localization or function. In this study, we demonstrate that TLR8 localized to the early endosome and the ER but not to the late endosome or lysosome in human monocytes and HeLa transfectants. UNC93B1 physically associated with human TLR8, similar to TLRs 3, 7, and 9, and played a critical role in TLR8-mediated signaling. Localization analyses of TLR8 tail-truncated mutants revealed that the transmembrane domain and the Toll/interleukin-1 receptor domain were required for proper targeting of TLR8 to the early endosome. Hence, although UNC93B1 participates in intracellular trafficking and signaling for all nucleotide-sensing TLRs, the mode of regulation of TLR localization differs for each TLR.  相似文献   

19.
The Toll/IL-1 receptor (TIR) domain plays a central role in Toll-like receptor (TLR) signalling. All TLRs contain a cytoplasmic TIR domain, which, upon activation, acts as a scaffold to recruit adaptor proteins. The adaptor proteins MyD88, Mal, TRIF, TRAM and SARM are also characterized by the presence of a TIR domain. MyD88, Mal, TRIF and TRAM associate with the TLRs via homophilic TIR domain interactions whereas SARM utilizes its TIR domain to negatively regulate TRIF. It is well established that the differential recruitment of adaptors to TLRs provides a significant amount of specificity to the TLR-signalling pathways. Despite this, the TIR-TIR interface has not been well defined. However, structural studies have indicated the importance of TIR domain surfaces in mediating specific TIR-TIR interactions. Furthermore, recent findings regarding the regulation of adaptors provide further insight into the crucial role of the TIR domain in TLR signalling.  相似文献   

20.
Among the 10 human Toll-like receptors (TLRs), TLR2 appears to be unique in its requirement for cooperation with other TLRs, namely TLR1 and TLR6, to mediate cell signaling. Through reconstitution experiments, we have defined more precisely the function of these human TLRs. Human colonic epithelial cells cotransfected with TLR1 and -2 preferentially respond to a synthetic tripalmitoylated bacterial lipopeptide analogue (Pam(3)CSK(4)). However, examination of a wide variety of lipopeptide derivatives indicates that recognition by human TLR1 and -2 does not strictly correlate with the number or position of the acyl chains on the modified cysteine residue. Conversely, human TLR2 and -6 exclusively respond to lipopeptides possessing a diacylglycerol group. Most surprisingly, we have found that an R stereoisomer of diacylated macrophage-activating lipopeptide 2 (MALP-2) exclusively activates epithelial cells through TLR6 and -2 but not through TLR1 and -2. These results suggest that the chirality of the central carbon of the diacylglycerol group of these agonists is a structural determinant for human TLR recognition. Examination of chimeric receptors, generated by domain exchange between TLR1 and -6, has revealed that leucine-rich repeats 9-12 of the extracellular domain enable these receptors to discriminate between structurally similar lipopeptides. However, additional chimeric constructs reveal that this region alone is not sufficient to generate receptors that can functionally cooperate with TLR2. Our results support the idea that TLR1 and TLR6 diverged during evolution to differentially recognize natural lipoprotein structures and that this function has been conserved with respect to the human receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号