首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a recombinant Escherichia coli was constructed by overexpressing glucosamine (GlcN) synthase and GlcN-6-P N-acetyltransferase for highly efficient production of GlcN and N-acetylglucosamine (GlcNAc). For further enhancement of GlcN and GlcNAc production, the effects of different glucose feeding strategies including constant-rate feeding, interval feeding, and exponential feeding on GlcN and GlcNAc production were investigated. The results indicated that exponential feeding resulted in relatively high cell growth rate and low acetate formation rate, while constant feeding contributed to the highest specific GlcN and GlcNAc production rate. Based on this, a multistage glucose supply approach was proposed to enhance GlcN and GlcNAc production. In the first stage (0–2 h), batch culture with initial glucose concentration of 27 g/l was conducted, whereas the second culture stage (2–10 h) was performed with exponential feeding at μ set = 0.20 h−1, followed by feeding concentrated glucose (300 g/l) at constant rate of 32 ml/h in the third stage (10–16 h). With this time-variant glucose feeding strategy, the total GlcN and GlcNAc yield reached 69.66 g/l, which was enhanced by 1.59-fold in comparison with that of batch culture with the same total glucose concentration. The time-dependent glucose feeding approach developed here may be useful for production of other fine chemicals by recombinant E. coli.  相似文献   

2.
A novel method is proposed to produce both phytase and single-cell protein in recombinant Pichia pastoris fermentation using monosodium glutamate wastewater (MSGW) as the basal medium. Recombinant P. pastoris MR33 transformed with a phytase gene (AppA-m) from Escherichia coli was constructed and showed capability to utilize ammonium as the only nitrogen source. The fermentation medium was optimized in shake flasks by single-factor test and response surface methodology. A fed-batch system containing 30% MSGW, 50 g/l glucose, 1.58 g/l CaSO4, 5.18 g/l MgSO4 and 6.67 g/l KH2PO4 was developed in a 3.7-l bioreactor. The maximum phytase activity in the MSGW medium reached 3,380 U/ml, 84.2% of that in chemically defined medium, and the dry cell weight was 136 g/l. The single-cell protein (SCP; 46.66% dry cell weight) contains a variety of amino acids and is low in fat, which is ideal for utilization in animal feed. Thus, it is feasible to use MSGW medium for the production of enzymes that can be expressed in P. pastoris.  相似文献   

3.
Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.  相似文献   

4.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

5.
Japanese encephalitis (JE) is one of the leading causes of acute encephalopathy affecting children and adolescents in the tropics. Optimization of media was carried out for enhanced production of recombinant JE virus envelope domain III (EDIII) protein in Escherichia coli. Furthermore, batch and fed-batch cultivation process in E. coli was also developed in optimized medium. Expression of this protein in E. coli was induced with 1 mM isopropyl-β-thiogalactoside and yielded an insoluble protein aggregating to form inclusion bodies. The inclusion bodies were solubilized in 8 M urea, and the protein was purified under denaturing conditions using Ni-NTA affinity chromatography. After fed-batch cultivation, the recombinant E. coli resulted in cell dry weight and purified protein about 36.45 g l−1 and 720 mg l−1 of culture, respectively. The purity of the recombinant JE virus EDIII protein was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, and reactivity of this protein was determined by Western blotting and ELISA with JE virus-infected human serum samples. These results establish the application of this protein to be used for the diagnosis of JE virus infection or for further studies in vaccine development. This process may also be suitable for the high-yield production of other recombinant viral proteins.  相似文献   

6.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

7.
Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.  相似文献   

8.
Artificial amplification of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) under glycolytic conditions enables Escherichia coli to maintain a greater intracellular ATP concentration during its growth phase. To demonstrate the biotechnological benefit of E. coli harboring a high intracellular ATP concentration, we compared the recombinant protein synthesis of a soluble protein (enhanced green fluorescence protein, GFP) with that of a secretory protein (alkaline protease, AP), under control of the T7 promoter in E. coli BL21(DE3) overexpressing PCK. According to the batch fermentations, the strain overexpressing PCK produced more GFP and AP with a lower increase in biomass than the control strain. In a chemostat culture (D = 0.7 h−1), the GFP production in the PCK overexpressing strain was 99.0 ± 4.31 mg/g cell, with a biomass of 0.22 g/L, while that of the control strain was 53.5 ± 3.07 mg/g cell, with a biomass of 0.35 g/L. These results indicate that the PCK overexpressing E. coli strain harboring high intracellular levels of ATP can be useful as a protein-synthesizing host. The potential uses of the strain and associated rationale are discussed.  相似文献   

9.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

10.
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.  相似文献   

11.
12.
S-thanatin, a small antimicrobial peptide with 21 amino acid residues, was expressed as a fusion protein containing thrombin cleavage site in Escherichia coli BL21 (DE3). To reduce the production cost, immobilization of thrombin in polyacrylamide gel for cleavage was studied in this work. The immobilized thrombin exhibited excellent activity within wider ranges of pH value and temperature for reaction than free enzyme, and the residual activity could remain above 75% after ten times of usage. Tricine–SDS–PAGE result showed that the immobilized thrombin could cleave the S-thanatin fusion protein effectively. After cleavage, recombinant S-thanatin was purified by preparative reversed-phase high-performance liquid chromatography and mass spectrum showed that the molecular weight (2,448.86) was close to the theoretical value (2,448.98). After purification, about 7 mg of S-thanatin was obtained from 1 l of culture and the recombinant exhibited excellent bioactivity to E. coli ATCC 25922, with the minimum inhibitory concentration of 12 μg/ml. The purification method could be applied to prepare other peptides with similar properties at low cost.  相似文献   

13.
14.
In order to achieve high butanol production by Clostridium saccharoperbutylacetonicum N1-4, the effect of lactic acid on acetone–butanol–ethanol fermentation and several fed-batch cultures in which lactic acid is fed have been investigated. When a medium containing 20 g/l glucose was supplemented with 5 g/l of closely racemic lactic acid, both the concentration and yield of butanol increased; however, supplementation with more than 10 g/l lactic acid did not increase the butanol concentration. It was found that when fed a mixture of lactic acid and glucose, the final concentration of butanol produced by a fed-batch culture was greater than that produced by a batch culture. In addition, a pH-controlled fed-batch culture resulted in not only acceleration of lactic acid consumption but also a further increase in butanol production. Finally, we obtained 15.5 g/l butanol at a production rate of 1.76 g/l/h using a fed-batch culture with a pH-stat continuous lactic acid and glucose feeding method. To confirm whether lactic acid was converted to butanol by the N1-4 strain, we performed gas chromatography–mass spectroscopy (GC-MS) analysis of butanol produced by a batch culture during fermentation in a medium containing [1,2,3-13C3] lactic acid as the initial substrate. The results of the GC-MS analysis confirmed the bioconversion of lactic acid to butanol.  相似文献   

15.
Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.  相似文献   

16.
The hydrogenase gene from Enterobacter cloacae (IIT-BT 08) was amplified and inserted into a prokaryotic expression vector to create a recombinant plasmid (pGEX-4T-2-Cat/hydA). The recombinant plasmid was transformed into a hydrogen-producing strain of Enterobacter aerogenes (ATCC13408). SDS–PAGE and western blot analysis confirmed the successful expression of the GST-tagged hydA protein. Anaerobic fermentation for the production of hydrogen from glucose was investigated using E. aerogenes ATCC13408 and the recombinant strain. The results showed that the hydrogen yield markedly increased, from 442.82 ± 22.61 ml/g glucose in the ATCC13408 strain to 864.02 ± 36.8 ml/g glucose in the recombinant. The maximum rate of hydrogen production was found to be 53.49 ± 3.34 ml l−1 h−1 using 1% (w/v) glucose as the substrate at pH 6.0 and a reaction temperature of 37°C.  相似文献   

17.
Wang Q  Min C  Zhu F  Xin Y  Zhang S  Luo L  Yin Z 《Current microbiology》2011,62(5):1535-1541
The amino acid l-theanine (γ-glutamylethylamide) has potential important applications in the food and pharmaceutical industries and increased demand for this compound is expected. It is the major “umami” (good taste) component of tea and its favorable physiological effects on mammals have been reported. An enzymatic method for the synthesis of l-theanine involving recombinant Escherichia coli γ-glutamyltranspeptidase (GGT) has been developed. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Escherichia coli γ-GGT. In order to obtain γ-GGT with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9 (consisting of glycerol and inorganic salts) and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni–NTA) resin chromatography with a yield of 115 mg per liter fermentation culture. After the SUMO/γ-GGT fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni–NTA column. Finally, about 62 mg recombinant γ-GGT was obtained from 1 l fermentation culture with no less than 95% purity. The recombinant γ-GGT showed great transpeptidase activity, with 1500 U of purified recombinant γ-GGT in a 1-l reaction system, a biosynthesis yield of 41 g of l-theanine was detected by paper chromatography or high pressure liquid chromatography (HPLC). Thus, the application of SUMO technology to the expression and purification of γ-GGT potentially could be employed for the industrial production of l-theanine.  相似文献   

18.
The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-d-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively.  相似文献   

19.
γ-Aminobutyric acid (GABA) is a kind of non-proteinogenic amino acid which is highly soluble in water and widely used in the food and pharmaceutical industries. Enzymatic conversion is an efficient method to produce GABA, whereby glutamic acid decarboxylase (GAD) is the key enzyme that catalyzes the process. The activity of wild-type GAD is usually limited by temperature, pH or biotin concentration, and hence directional modification is applied to improve its catalytic properties and practical application. GABA was produced using whole cell transformation of the recombinant strains Escherichia coli BL21(DE3)-Gad B, E. coli BL21(DE3)-Gad B-T62S and E. coli BL21(DE3)-Gad B-Q309A. The corresponding GABA concentrations in the fermentation broth were 219.09, 238.42, and 276.66 g/L, and the transformation rates were 78.02%, 85.04%, and 98.58%, respectively. The results showed that Gad B-T62S and Gad B-Q309A are two effective mutation sites. These findings may contribute to ideas for constructing potent recombinant strains for GABA production. Practical Application : Enzymatic properties of the GAD from Escherichia coli and GAD site-specific mutants were examined by analyzing their conserved sequences, substrate contacts, contact between GAD amino acid residues and mutation energy (ΔΔG) of the GAD mutants. The enzyme activity and stability of Gad B-T62S and Gad B-Q309A mutants were improved compared to Gad B. The kinetic parameters Km and Vmax of Gad B, Gad B-T62S, and Gad B-Q309A mutants were 11.3 ± 2.1 mM and 32.1 ± 2.4 U/mg, 7.3 ± 2.5 mM and 76.1 ± 3.1 U/mg, and 7.2 ± 3.8 mM and 87.3 ± 1.1 U/mg, respectively. GABA was produced using whole cell transformation of the recombinant strains E. coli BL21(DE3)-Gad B, E. coli BL21(DE3)-Gad B-T62S, and E. coli BL21(DE3)-Gad B-Q309A. The corresponding GABA concentrations in the fermentation broth were 219.09, 238.42, and 276.66 g/L, and the transformation rates were 78.02%, 85.04%, and 98.58%, respectively.  相似文献   

20.
We reported that lignocellulose decomposition can be used to facilitate the production of bioactive polysaccharides from submerged culture of Inonotus obliquus. Exo-polysaccharide (EPS) production and antioxidant activity by Inonotus obliquus was enhanced by employing lignocellulose decomposition in a corn straw-containing submerged fermentation. A significant increase in the EPS production and hydroxyl radical scavenging activity from 1.09 ± 0.01 g/l and 72.3 ± 1.9% in a basal medium to 1.38 ± 0.02 g/l and 82.7 ± 0.5% in a corn straw-containing medium was obtained. A synchronized effect between lignocellulose decomposition and malondialdehyde presenting hydroxyl radical concentration in the fermentation broth was identified. The adding of thiourea, a hydroxyl radical-scavenging reagent, suppressed malondialdehyde generation and lowered the lignocellulose decomposition rate. Correspondingly, the EPS production and hydroxyl radical scavenging activity decreased to 1.26 g/l and 74%. The EPS obtained from the corn straw-containing medium also presented the strongest superoxide radical scavenging activity. The monosaccharide components of the EPS from the corn straw-containing medium are rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar proportions at 3.0, 3.0, 0.9, 46.6, 11.4, and 35.1%, respectively, which are largely different from the molar proportions of the EPS from the basal medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号