首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Females of many socially monogamous species accept or even actively seek copulations outside the social pair bond. As females cannot increase the number of offspring with promiscuous behaviour, the question arises why they engage in extra-pair mating. We used microsatellite data to determine paternity, heterozygosity and genetic relatedness in the reed bunting (Emberiza schoeniclus), a species with high levels of extra-pair paternity (EPP). We found that extra-pair young (EPY) were more heterozygous than within-pair young (WPY). The high heterozygosity of the EPY resulted from a low genetic similarity between females and their extra-pair mates. EPY were heavier and larger when compared with their maternal half-siblings shortly before they left the nest. Recapture data indicated a higher fledgling survival of EPY compared with WPY. Our data suggest that reed bunting females increase the viability of their offspring and thus fitness through extra-pair mating with genetically dissimilar males.  相似文献   

2.
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay‐offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate‐induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.  相似文献   

3.
In Drosophila melanogaster, biological rhythms, aggression and mating are modulated by group size and composition. However, the fitness significance of this group effect is unknown. By varying the composition of groups of males and females, we show that social context affects reproductive behaviour and offspring genetic diversity. Firstly, females mating with males from the same strain in the presence of males from a different strain are infecund, analogous to the Bruce effect in rodents, suggesting a social context-dependent inbreeding avoidance mechanism. Secondly, females mate more frequently in groups composed of males from more than one strain; this mitigates last male sperm precedence and increases offspring genetic diversity. However, smell-impaired Orco mutant females do not increase mating frequency according to group composition; this indicates that social context-dependent changes in reproductive behaviour depend on female olfaction, rather than direct male-male interactions. Further, variation in mating frequency in wild-type strains depends on females and not males. The data show that group composition can affect variance in the reproductive success of its members, and that females play a central role in this process. Social environment can thus influence the evolutionary process.  相似文献   

4.
In many species, the physical act of mating and exposure to accessory gland proteins (Acps) in male seminal fluid reduces female survival and offspring production. It is not clear what males gain from harming their sexual partners or why females mate frequently despite being harmed. Using sterile strains of Drosophila melanogaster that differ in their production of Acps, we found that both the physical act of mating and exposure to male seminal fluid in mothers increase the fitness of daughters. We show that the changes in daughter fitness are mediated by parental effects, not by sexual selection involving good genes or owing to variation in maternal egg production. These results support the idea that male harm of females might partly evolve through cross-generational fitness benefits.  相似文献   

5.
We examined the female mating choice of Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) when exposed to a male with which she had mated before vs. a novel male which she never encountered. After first mating, most females chose to remate with the same male and showed a shorter mating latency period to copulation with the familiar male as compared to a new male. Then, we allowed a female to mate once, 5× with the same, or 5× with different males to evaluate how different mating patterns influence the females’ reproductive performance and offspring fitness. Mating 5× with the same male or different males improved female egg production, but had no effect on hatching rate or offspring fitness. Our findings suggest that female C. montrouzieri are able to distinguish between familiar and unfamiliar males and prefer to mate with the former. Further, multiple mating appears to offer material benefits to female C. montrouzieri specifically by increasing fecundity.  相似文献   

6.
Mating failure, characterized by the lack of production of offspring following copulation, is relatively common across taxa yet is little understood. It is unclear whether mating failures are stochastic occurrences between incompatible mating partners or represent a persistent, meaningful phenotype on the part of one or other sex. Here we test this in the seed bug Lygaeus simulans, by sequentially mating families of males with randomly allocated unrelated females and calculating the repeatability of mating outcome for each individual male and family. Mating outcome is significantly repeatable within individual males but not across full‐sib brothers. We conclude that mating failure represents a consistent male‐associated phenotype with low heritability in this species, affected by as yet undetermined environmental influences on males.  相似文献   

7.
If females are unable to discriminate among males before mating,remating by females that store sperm may have evolved as a hedgeagainst having only "costly" mates (less preferred males thatreduce her fitness). However, the benefit of remating is notguaranteed because she can also mate by chance with anothercostly male. We devised a model to explain the evolution offemale remating by representing female fitness as a functionof the proportion of costly mates. We examined the effect ofa linear, a concave-up, and a concave-down fitness functionand found that only the latter favors the evolution of femaleremating. With a concave-down function, females mating with50% costly mates have nearly the same fitness as do femaleswith none. A biological interpretation for a concave-down functionis that sperm from good males are better at competing with spermfrom costly males or are more preferred by females. A concave-upfunction implies the reverse, whereas a linear function willoccur when sperm are equally competitive. We review specificsituations in nature that might produce a concave-down functionand find evidence that sterility and intragenomic conflict aretwo phenomena capable of driving the evolution of female rematingby our model.  相似文献   

8.
Avian extrapair mating systems provide an interesting model to assess the role of genetic benefits in the evolution of female multiple mating behavior, as potentially confounding nongenetic benefits of extrapair mate choice are seen to be of minor importance. Genetic benefit models of extrapair mating behavior predict that females engage in extrapair copulations with males of higher genetic quality compared to their social mates, thereby improving offspring reproductive value. The most straightforward test of such good genes models of extrapair mating implies pairwise comparisons of maternal half-siblings raised in the same environment, which permits direct assessment of paternal genetic effects on offspring traits. But genetic benefits of mate choice may be difficult to detect. Furthermore, the extent of genetic benefits (in terms of increased offspring viability or fecundity) may depend on the environmental context such that the proposed differences between extrapair offspring (EPO) and within-pair offspring (WPO) only appear under comparatively poor environmental conditions. We tested the hypothesis that genetic benefits of female extrapair mate choice are context dependent by analyzing offspring fitness-related traits in the coal tit (Parus ater) in relation to seasonal variation in environmental conditions. Paternal genetic effects on offspring fitness were context dependent, as shown by a significant interaction effect of differential paternal genetic contribution and offspring hatching date. EPO showed a higher local recruitment probability than their maternal half-siblings if born comparatively late in the season (i.e., when overall performance had significantly declined), while WPO performed better early in the season. The same general pattern of context dependence was evident when using the number of grandchildren born to a cuckolding female via her female WPO or EPO progeny as the respective fitness measure. However, we were unable to demonstrate that cuckolding females obtained a general genetic fitness benefit from extrapair fertilizations in terms of offspring viability or fecundity. Thus, another type of benefit could be responsible for maintaining female extrapair mating preferences in the study population. Our results suggest that more than a single selective pressure may have shaped the evolution of female extrapair mating behavior in socially monogamous passerines.  相似文献   

9.
In both animal and human societies, individuals may forego personal reproduction and provide care to the offspring of others. Studies aimed at investigating the adaptive nature of such cooperative breeding systems in vertebrates typically calculate helper 'fitness' from relationships of helper numbers and offspring survival to independence. The aim of this study is to use observations and supplemental feeding experiments in cooperatively breeding meerkats, Suricata suricatta, to investigate whether helpers influence the long-term reproductive potential of offspring during adulthood. We show that helpers have a significant and positive influence on the probability that offspring gain direct reproductive success in their lifetimes. This effect arises because helpers both reduce the age at which offspring begin to reproduce as subordinates and increase the probability that they will compete successfully for alpha rank. Supplemental feeding experiments confirm the causality of these results. Our results suggest that one can neither discount the significance of helper effects when none is found nor necessarily estimate accurately the fitness benefit that helpers accrue, unless their effects on offspring are considered in the long term.  相似文献   

10.
11.
《Animal behaviour》1998,55(2):387-403
The purpose of this controlled-breeding study was to investigate the viability consequences of female choice and sequential polyandry for offspring in a way that would separate the influences of these two aspects of female sexual behaviour. Female sierra dome spiders,Neriene litigiosa(=Linyphia litigiosa) typically mate two to three times before production of their first batch of eggs, although some females (ca 16%) mate only once. Strong fighters are preferred as first mates and principal sires. Large males that give a vigorous performance during copulatory courtship are preferred as sires among a female's secondary mates. In this study, the number of matings by free-living females was experimentally controlled and the size and copulatory vigour of all the females’ mates were recorded. At the end of the breeding season, the females were collected and their broods were obtained in captivity. Randomly chosen subsets of 28 female's offspring were reared under standard conditions during the following spring. The spiderlings were reared for 27 days in the company of siblings under conditions that would encourage the expression of genetic variation in viability, and growth and survivorship were monitored. After controlling for maternal effects (i.e. female size and oviposition date) and variance in feeding opportunities among rearing groups, both mate number and mate size were positively and independently related to offspring growth rates and the size of offspring attained after emergence from the natal cocoon. The results support the hypotheses that the preference for large males yields viability benefits to offspring and that polyandry can augment the benefits of selective mating.  相似文献   

12.
The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy‐sperm” (GS‐SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS‐SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS‐SS models. Here, we conduct quantitative genetic analyses on paternal half‐siblings to test this component of GS‐SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow‐sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean‐standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life‐history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS‐SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems.  相似文献   

13.
It is well established that females of many species exhibitpolyandry. Although such behavior often increases female fitnessby augmenting fecundity or enhancing the genetic diversity andvigor of their offspring, it often reduces female longevity.It has been argued that trade-offs between these costs and benefitsshould limit the degree to which females remate. However, theexistence of highly polyandrous species suggests substantialpolyandry benefits and/or minimal costs in some systems. Femalesof the leaf beetle, Chrysochus cobaltinus, are extremely polyandrous,providing an opportunity to examine the factors influencingthe evolution of such behaviors. We compared the fecundity andlongevity of singly mated females, females that mated multipletimes with the same male, and females that mated multiple timeswith different males. Compared with females in the single matingtreatment, females in both multiple mating treatments exhibiteda significant reduction in latency to oviposition and, due toan increase in daily egg production, significant increases inlifetime fecundity. This difference diminished as the time sincelast mating increased. There were no differences in fecunditybetween the 2 multiple mating treatments, indicating that mateidentity does not influence the material benefits of multiplemating. Surprisingly, female longevity did not differ amongtreatments. The pronounced fecundity benefits that females gainfrom multiple mating, coupled with a lack of longevity costs,apparently explains the extreme polyandry in this species. Inaddition, the existence of material fitness benefits via conspecificmatings raises the intriguing possibility that in a C. cobaltinusChrysochusauratus hybrid zone, heterospecific matings may confer similarbenefits to Chrysochus females.  相似文献   

14.
Mating systems are an important factor influencing the variance in reproductive success among individuals within natural populations and thus have important ecological and evolutionary implications. We used molecular pedigree reconstruction techniques with microsatellite DNA data to characterize the genetic mating system and mate selection in adult smallmouth bass spawning in Lake Opeongo. The genetic mating system of smallmouth bass in this system can be characterized as predominantly monogamous with a low rate of polygynandry particularly among larger individuals. Iteroparous individuals showed a complete absence of interannual mate fidelity, presumably due to the low annual return rate of spawning adults. Within a season, individuals from both sexes pursued additional mating opportunities with males showing greater variance in mate number than females. Female mate selection appeared to be largely random with little evidence for elevated levels of inbreeding in this population. Multiple mating females pursued additional males to whom they were less related than the first male with which they spawned within a given season, however, this pattern varied among years. The mating pattern observed in this population would likely limit the strength of sexual selection and thus could account for the lack of sexual dimorphism and the absence of alternative reproductive tactics in this species.  相似文献   

15.
Abstract "Good genes" models of sexual selection predict that male courtship displays can advertise genetic quality and that, by mating with males with extreme displays, females can obtain genetic benefits for their offspring. However, because the relative performance of different genotypes can vary across environments, these genetic benefits may depend on the environmental context; in which case, static mating preferences may not be adaptive. To better understand how selection acts on the preference that female gray tree frogs ( Hyla versicolor ) express for long advertisement calls, I tested for genetic benefits in two realistic natural environments, by comparing the performance of half-sibling offspring sired by males with long versus short calls. Tadpoles from twelve such maternal half-sibships were raised in enclosures in their natal pond at two densities. In the low-density treatment, offspring of long-call males were larger at metamorphosis than were offspring of short-call males, whereas in the high-density treatment, offspring of males with long calls tended to metamorphose later than offspring of males with short calls. Thus, although the genes indicated by long calls were advantageous under low-density conditions, they were not beneficial under all conditions, suggesting that a static preference for long calls may not be adaptive in all environments. Such a genotype-by-environment interaction in the genetic consequences of mate choice predicts that when the environment is variable, selection may favor plasticity in female preferences or female selectivity among environments to control the conditions experienced by the offspring.  相似文献   

16.
17.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

18.
Gowaty PA 《Fly》2012,6(1):3-11
Polyandry is a paradox: why do females mate multiple times when a single ejaculate often provides enough sperm for lifetime egg production? Gowaty et al. addressed explanations for polyandry in Drosophila pseudoobscura from the perspective of hypotheses based on sex differences in costs of reproduction (CoR). Contrary to CoR, Gowaty et al. showed that (1) a single ejaculate was inadequate for lifetime egg production; (2) polyandry provided fitness benefits to females beyond provision of adequate sperm and (3) fitness benefits of polyandry were not offset by costs. Here, I discuss predictions of the ad hoc hypotheses of CoR and three alternative hypotheses to CoR to facilitate a discussion and further development of a strong inference approach to experiments on the adaptive significance of polyandry for females. Each of the hypotheses makes testable predictions; simultaneous tests of the predictions will provide a strong inference approach to understanding the adaptive significance of multiple mating. I describe a sex-symmetric experiment meant to evaluate variation in fitness among lifelong virgins (V); monogamous females and males with one copulation (MOC); monogamous females and males with multiple copulations (MMC); PAND, polyandrous females; and PGYN, polygynous males. Last, I recommend the study of many different species, while taking care in choice of study species and attention to the assumptions of specific hypotheses. I particularly urge the study of many more Drosophila species both in laboratory and the wild to understand the “nature of flies in nature,” where opportunities and constraints mold evolutionary responses.  相似文献   

19.
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance–covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma–anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.  相似文献   

20.
In the polyandrous gift-giving butterfly Pieris napi, females mature at a smaller size than males under poor food conditions, so it has been suggested that females can compensate for their smaller size through nuptial feeding. We tested this hypothesis by assessing female polyandry in relation to female size in a study of a wild bivoltine population and in a laboratory experiment. Contrary to expectation, larger females had a higher mating frequency. In the wild population female polyandry was positively correlated with size and in the laboratory experiment larger females were also more polyandrous. Hence, smaller females cannot compensate for their size by increasing their mating frequency, perhaps because the rate of spermatophore breakdown sets the limit for polyandry and larger females are able to break down the spermatophore faster. In addition, the lifetime number of matings for wild females varied between one and five. As previous studies indicate that female fitness in P. napi appears to increase monotonically with number of mates as a result of the increase in spermatophore material received, it is surprising that 12% of the wild females in the oldest age classes had mated only once and that another 35-40% had mated only twice. This apparently maladaptive behaviour is discussed in terms of sexually antagonistic coevolution and whether environmental conditions influence optimal mating frequency. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号