首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetraheme protein cytochrome c(3) (Cyt-c(3)) from Desulfovibrio gigas, immobilized on a self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid, is studied by theoretical and spectroscopic methods. Molecular dynamics simulations indicate that the protein docks to the negatively charged SAM via its lysine-rich domain around the exposed heme IV. Complex formation is associated with only little protein structural perturbations. This finding is in line with the resonance Raman and surface-enhanced resonance Raman (SERR) spectroscopic results that indicate essentially the same heme pocket structures for the protein in solution and adsorbed on SAM-coated Ag electrodes. Electron- and proton-binding equilibrium calculations reveal substantial negative shifts of the redox potentials compared to the protein in solution. The magnitude of these shifts decreases in the order heme IV (-161 mV) > heme III (-73 mV) > heme II (-57 mV) > heme I (-26 mV), resulting in a change of the order of reduction. These shifts originate from the distance-dependent electrostatic interactions between the SAM headgroups and the individual hemes, leading to a stabilization of the oxidized forms. The results of the potential-dependent SERR spectroscopic analyses are consistent with the theoretical predictions and afford redox potential shifts of -160 mV (heme IV), -90 mV (heme III), -70 mV (heme II), and +20 mV (heme I) relative to the experimental redox potentials for Cyt-c(3) in solution. SERR spectroscopic experiments reveal electric-field-induced changes of the redox potentials also for the structurally very similar Cyt-c(3) from Desulfovibrio vulgaris, although the shifts are somewhat smaller compared to Cyt-c(3) from D. gigas. This study suggests that electric-field-induced redox potential shifts may also occur upon binding to biomembranes or partner proteins and thus may affect biological electron transfer processes.  相似文献   

2.
The structure of cytochrome c552 (Cyt-c552) from Thermus thermophilus shows many differences to other c-type cytochromes. The rich lysine domain close to the heme does not exist in this cytochrome, allowing us to postulate that the interaction with its redox partner must be different to the cytochrome c/cytochrome c oxidase interaction. We report a study of Cyt-c552 adsorbed on self-assembled monolayers (SAMs) of functionalized alkanethiols used to mimic the chemical properties of its redox partner (ba3-oxydase). Hydrophilic (-COOH), polar (-OH), hydrophobic (-CH3), and mixed (-OH/-CH3) SAMs grafted on roughened silver electrodes were characterized by X-ray photoelectron spectroscopy. Surface enhanced resonance Raman spectroscopy (SERRS) was employed to determine the structure and the redox properties (E degrees and number of transferred electron) of the heme of Cyt-c552 adsorbed on roughened silver electrodes coated by the different SAMs. The surface that most closely models the environment of the ba3-oxidase is a mixed SAM formed by 50% polar [Ag-(CH2)5-CH2OH] and 50% hydrophobic [Ag-(CH2)5-CH3] alkanethiols. Only the native form B1(6cLS) of Cyt-c552 is detected by SERRS when the protein is adsorbed on such a surface that promotes a protein orientation favorable for the electron transfer (number of transferred electron = 1). We shall discuss the differences and similarities of the electron-transfer mechanism of Cyt-c552 compared to cyt-c.  相似文献   

3.
Clay-bridged electron transfer between cytochrome p450(cam) and electrode   总被引:1,自引:0,他引:1  
We demonstrate a very fast heterogeneous redox reaction of substrate-free cytochrome P450(cam) on a glassy carbon electrode modified with sodium montmorillonite. The linear relationship of the peak current in the cyclic voltammogram with the scan rate indicates a reversible one-electron transfer surface process. The electron transfer rate is in the range from 5 to 152 s(-1) with scan rates from 0.4 to 12 V/s, respectively. These values are comparable to rates reported for the natural electron transfer from putidaredoxin to P450(cam). The formal potential of adsorbed P450(cam) is -139 mV (vs NHE) and therefore positively shifted by 164 mV compared to the potential of substrate-free P450(cam) in solution. UV-VIS and FTIR spectra do not indicate an influence of the clay colloidal particles on the heme and the secondary structure of P450(cam) in solution. However, P450(cam) adsorbed on the surface of the clay-modified electrode may undergo partial dehydration resulting in the shift of the formal potential.  相似文献   

4.
The genus Shewanella produces a unique small tetraheme cytochrome c that is implicated in the iron oxide respiration pathway. It is similar in heme content and redox potential to the well known cytochromes c(3) but related in structure to the cytochrome c domain of soluble fumarate reductases from Shewanella sp. We report the crystal structure of the small tetraheme cytochrome c from Shewanella oneidensis MR-1 in two crystal forms and two redox states. The overall fold and heme core are surprisingly different from the soluble fumarate reductase structures. The high resolution obtained for an oxidized orthorhombic crystal (0.97 A) revealed several flexible regions. Comparison of the six monomers in the oxidized monoclinic space group (1.55 A) indicates flexibility in the C-terminal region containing heme IV. The reduced orthorhombic crystal structure (1.02 A) revealed subtle differences in the position of several residues, resulting in decreased solvent accessibility of hemes and the withdrawal of a positive charge from the molecular surface. The packing between monomers indicates that intermolecular electron transfer between any heme pair is possible. This suggests there is no unique site of electron transfer on the surface of the protein and that electron transfer partners may interact with any of the hemes, a process termed "electron-harvesting." This optimizes the efficiency of intermolecular electron transfer by maximizing chances of productive collision with redox partners.  相似文献   

5.
The caa3-oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS and Fourier-transform infrared (FT-IR) spectroscopic approach. In this oxidase the electron donor, cytochrome c, is covalently bound to subunit II of the cytochrome c oxidase. Oxidative electrochemical redox titrations in the visible spectral range yielded a midpoint potential of -0.01 +/- 0.01 V (vs. Ag/AgCl/3m KCl, 0.218 V vs. SHE') for the heme c. This potential differs for about 50 mV from the midpoint potential of isolated cytochrome c, indicating the possible shifts of the cytochrome c potential when bound to cytochrome c oxidase. For the signals where the hemes a and a3 contribute, three potentials, = -0.075 V +/- 0.01 V, Em2 = 0.04 V +/- 0.01 V and Em3 = 0.17 V +/- 0.02 V (0.133, 0.248 and 0.378 V vs. SHE', respectively) could be obtained. Potential titrations after addition of the inhibitor cyanide yielded a midpoint potential of -0.22 V +/- 0.01 V for heme a3-CN- and of Em2 = 0.00 V +/- 0.02 V and Em3 = 0.17 V +/- 0.02 V for heme a (-0.012 V, 0.208 V and 0.378 V vs. SHE', respectively). The three phases of the potential-dependent development of the difference signals can be attributed to the cooperativity between the hemes a, a3 and the CuB center, showing typical behavior for cytochrome c oxidases. A stronger cooperativity of CuB is discussed to reflect the modulation of the enzyme to the different key residues involved in proton pumping. We thus studied the FT-IR spectroscopic properties of this enzyme to identify alternative protonatable sites. The vibrational modes of a protonated aspartic or glutamic acid at 1714 cm-1 concomitant with the reduced form of the protein can be identified, a mode which is not present for other cytochrome c oxidases. Furthermore modes at positions characteristic for tyrosine vibrations have been identified. Electrochemically induced FT-IR difference spectra after inhibition of the sample with cyanide allows assigning the formyl signals upon characteristic shifts of the nu(C=O) modes, which reflect the high degree of similarity of heme a3 to other typical heme copper oxidases. A comparison with previously studied cytochrome c oxidases is presented and on this basis the contributions of the reorganization of the polypeptide backbone, of individual amino acids and of the hemes c, a and a3 upon electron transfer to/from the redox active centers discussed.  相似文献   

6.
Cytochrome p450BM3 is a self-sufficient fatty acid monooxygenase consisting of a diflavin (FAD/FMN) reductase domain and a heme domain fused together in a single polypeptide chain. The multidomain structure makes it an ideal model system for studying the mechanism of electron transfer and for understanding p450 systems in general. Here we report the redox properties of the cytochrome p450BM3 wild-type holoenzyme, and its isolated FAD reductase and p450 heme domains, when immobilized in a didodecyldimethylammonium bromide film cast on an edge-plane graphite electrode. The holoenzyme showed cyclic voltammetric peaks originating from both the flavin reductase domain and the FeIII/FeII redox couple contained in the heme domain, with formal potentials of -0.388 and -0.250 V with respect to a saturated calomel electrode, respectively. When measured in buffer solutions containing the holoenzyme or FAD-reductase domain, the reductase response could be maintained for several hours as a result of protein reorganization and refreshing at the didodecyldimethylammonium modified surface. When measured in buffer solution alone, the cyclic voltammetric peaks from the reductase domain rapidly diminished in favour of the heme response. Electron transfer from the electrode to the heme was measured directly and at a similarly fast rate (ks' = 221 s-1) to natural biological rates. The redox potential of the FeIII/FeII couple increased when carbon monoxide was bound to the reduced heme, but when in the presence of substrate(s) no shift in potential was observed. The reduced heme rapidly catalysed the reduction of oxygen to hydrogen peroxide.  相似文献   

7.
Collagen, an electrochemically inert protein, formed films on pyrolytic graphite (PG) electrodes, which provided a suitable microenvironment for heme proteins to transfer electron directly with the underlying electrodes. Hemoglobin (Hb) and catalase (Cat) incorporated in collagen films exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks at around -0.35 V and -0.47 V (vs. SCE) in pH 7.0 buffers, respectively, characteristic of the protein heme Fe(III)/Fe(II) redox couples. UV-vis spectra showed that the heme proteins in collagen films retained their near-native conformations in the medium pH range. The results of scanning electron microscopy (SEM) demonstrated that the interaction between heme proteins and collagen made the morphology of dry protein-collagen films different from the collagen films alone. The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (k(s)) and formal potential (E degrees ') of the films were estimated by using square wave voltammograms (SWV) and nonlinear regression analysis. The heme protein-collagen film electrodes were also used to catalyze the reduction of nitrite, oxygen and hydrogen peroxide, indicating potential applications of the films for the fabrication of a new type of biosensor that does not use mediators.  相似文献   

8.
Self-assembled monolayers of thiolated compounds are used as promoters for protein-electrode reactions. They provide an anchor group based on thiol chemisorptions and also a functional group for effective interaction with the protein. These interactions are often governed by electrostatic attraction. For example, for positively charged proteins, such as cytochrome c and the selenoprotein glutathione peroxidase, mercaptoalkanoic acids have been used. Clay modification of the electrode surface has been found to facilitate the heterogeneous electron transfer process for heme proteins, e.g. cytochrome c, cytochrome P450 and myoglobin. Interestingly, nucleic acids at carbon electrodes and thiol-modified double stranded oligonucleotides act as promoters of the redox communication to proteins, whereas the mechanism is still subject to controversy interpretations. By interacting the protein immobilised at the electrode with species in solution, signal chains have been constructed. The interaction can result in a simple co-ordination or redox reaction, depending on the nature of the reaction partners. For analytical purposes, e.g. biosensors, the electrochemical redox conversion of the immobilised protein is evaluated.  相似文献   

9.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

10.
We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.  相似文献   

11.
Ding X  Li J  Hu J  Li Q 《Analytical biochemistry》2005,339(1):46-53
The direct electron transfer of surface-confined horse heart cytochrome c (Cyt c) was achieved using COOH-terminated alkanethiolate-modified gold electrode. Later DNA was immobilized on the two-layer modified electrode. The quantitative determination of DNA was explored and the interaction between cytochrome c and DNA was studied. The binding site sizes were determined to be 15 bp per Cyt c molecule with double-stranded (ds) DNA and 30 nucleotides binding one Cyt c molecule with single-stranded (ss) DNA. At the dsDNA/Cyt c/MUA/Au electrode, the rate constant of oxidation electron transfer k(s,ox)=1.59x10(-3)cms-1 was obtained, at the ssDNA/Cyt c/MUA/Au electrode, the value was 2.43x10(-3)ms-1 when the scan rate was 1.0V/s. The different electrodes were characterized with electrochemical quartz crystal microbalance and atomic force microscope.  相似文献   

12.
The kinetics of electron transfer from reduced high-potential iron-sulfur protein (HiPIP) to the photooxidized tetraheme cytochrome c subunit (THC) bound to the photosynthetic reaction center (RC) from the purple sulfur bacterium Allochromatium vinosum were studied under controlled redox conditions by flash absorption spectroscopy. At ambient redox potential Eh = +200 mV, where only the high-potential (HP) hemes of the THC are reduced, the electron transfer from HiPIP to photooxidized HP heme(s) follows second-order kinetics with rate constant k = (4.2 +/- 0.2) 10(5) M(-1) s(-1) at low ionic strength. Upon increasing the ionic strength, k increases by a maximum factor of ca. 2 at 640 mM KCl. The role of Phe48, which lies on the external surface of HiPIP close to the [Fe4S4] cluster and presumably on the electron transfer pathway to cytochrome heme(s), was investigated by site-directed mutagenesis. Substitution of Phe48 with arginine, aspartate, and histidine completely prevents electron donation. Conversely, electron transfer is still observed upon substitution of Phe48 with tyrosine and tryptophan, although the rate is decreased by more than 1 order of magnitude. These results suggest that Phe48 is located on a key protein surface patch essential for efficient electron transfer, and that the presence of an aromatic hydrophobic residue on the putative electron-transfer pathway plays a critical role. This conclusion was supported by protein docking calculations, resulting in a structural model for the HiPIP-THC complex, which involves a docking site close to the LP heme farthest from the bacteriochlorophyll special pair.  相似文献   

13.
Biocompatible nanosized polyamidoamine (PAMAM) dendrimer films provided a suitable microenvironment for heme proteins to transfer electron directly with underlying pyrolytic graphite (PG) electrodes. Hemoglobin (Hb), myoglobin (Mb), horseradish peroxidase (HRP), and catalase (Cat) incorporated in PAMAM films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, respectively, characteristic of the protein heme Fe(III)/Fe(II) redox couples. While Hb-, Mb-, and HRP-PAMAM films showed the cyclic voltammetry (CV) peaks at about -0.34 V vs. saturated calomel electrode (SCE) in pH 7.0 buffers, Cat-PAMAM films displayed the peak pair at a more negative potential of -0.47 V. The protein-PAMAM films demonstrated a surface-confined or thin-layer voltammetric behavior. The electrochemical parameters such as apparent heterogeneous electron transfer rate constants (k(s)) and formal potentials (E (degrees ')) were estimated by square wave voltammetry with nonlinear regression analysis. UV-vis and IR spectroscopy showed that the proteins retained their near-native secondary structures in PAMAM films. Oxygen, hydrogen peroxide, and nitrite were catalytically reduced at the protein-PAMAM film electrodes, showing the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of the proteins.  相似文献   

14.
The structure and the electron-transfer properties of cytochrome c (cyt c) absorbed on a silver electrode were analyzed by surface-enhanced resonance Raman spectroscopy. It was found that the absorbed cyt c exists in various conformational states depending on the electrode potential. In state I the native structure of the heme protein is fully preserved and the redox potential (+0.02 V vs saturated calomel electrode) is close to the value for cyt c in solution. In state II the heme iron exists in a mixture of five-coordinated high-spin and six-coordinated low-spin configurations. It had been shown that these configurations form a thermal equilibrium [Hildebrandt, P., & Stockburger, M. (1986) J. Phys. Chem. 90,6017]. It is demonstrated that these equilibria strongly depend on the charge distribution within the electrical double layer of the silver electrode/electrolyte interface, indicating that the changes in the coordination shell are induced by electrostatic interactions. The structural alterations in state II are apparently restricted to the heme crevice, which assumes an open conformation compared to the close structure in state I. This leads to a strong decrease of the redox potentials, which were determined to be -0.31 and -0.41 V for the five-coordinated high-spin and six-coordinated low-spin configurations, respectively. On the other hand, gross distortions of the protein structure can be excluded since the reversible proton-induced conformational change of cyt c as found in solution at low pH also takes place in state II of the absorbed cyt c. The linkage of cyt c molecules to the surface is mediated by charged amino acid groups, and it depends on the potential which groups are thermodynamically favored to form such a molecular binding site. The conformational states I and II, which are in potential-dependent equilibrium, therefore refer to two different molecular binding sites. At potentials below zero charge (less than approximately -0.6 V) a rapid denaturation of the absorbed cyt c is noted, which is reflected by drastic and irreversible changes in the surface-enhanced resonance Raman spectrum. Our results are discussed on the background of previous electrochemical studies of cyt c at electrodes.  相似文献   

15.
P Hellwig  T Soulimane  G Buse  W M?ntele 《Biochemistry》1999,38(30):9648-9658
The ba3 cytochrome c oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS, and FTIR spectroscopic approach. Oxidative electrochemical redox titrations yielded midpoint potentials of Em1= -0.02 +/- 0.01 V and Em2 = 0.16 +/- 0.04 V for heme b and Em1 = 0.13 +/- 0.04 V and Em2 = 0.22 +/- 0.03 V for heme a(3) (vs Ag/AgCl/3 M KCl). Fully reversible electrochemically induced UV/VIS and FTIR difference spectra were obtained for the full potential step from -0. 5 to 0.5 V as well as for the critical potential steps from -0.5 to 0.1 V (heme b is fully oxidized and heme a3 remains essentially reduced) and from 0.1 to 0.5 V (heme b remains oxidized and heme a3 becomes oxidized). The difference spectra thus allow to us distinguish modes coupled to heme b and heme a3. Analogous difference spectra were obtained for the enzyme in D2O buffer for additional assignments. The FTIR difference spectra reveal the reorganization of the polypeptide backbone, perturbations of single amino acids and of hemes b and a3 upon electron transfer to/from the four redox-active centers heme b and a3, as well as CuB and CuA. Proton transfer coupled to redox transitions can be expected to manifest in the spectra. Tentative assignments of heme vibrational modes, of individual amino acids, and of secondary structure elements are presented. Aspects of the uncommon electrochemical and spectroscopic properties of the ba3 oxidase from T. thermophilus are discussed.  相似文献   

16.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

17.
The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues (PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (-162, -143, and -133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes (covering a range from 10 to 36 mV) and by redox-Bohr interactions (up to -62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e-/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c7 isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed.  相似文献   

18.
Redox protein complexes between type I and type II tetraheme cytochromes c(3) from Desulfovibrio vulgaris Hildenborough are here analyzed using theoretical methodologies. Various complexes were generated using rigid-body docking techniques, and the two lowest energy complexes (1 and 2) were relaxed using molecular dynamics simulations with explicit solvent and subjected to further characterization. Complex 1 corresponds to an interaction between hemes I from both cytochromes c(3). Complex 2 corresponds to an interaction between the heme IV from type I and the heme I from type II cytochrome c(3). Binding free energy calculations using molecular mechanics, Poisson-Boltzmann, and surface accessibility methods show that complex 2 is more stable than complex 1. Thermodynamic calculations on complex 2 show that complex formation induces changes in the reduction potential of both cytochromes c(3), but the changes are larger in the type I cytochrome c(3) (the largest one occurring on heme IV, of approximately 80 mV). These changes are sufficient to invert the global titration curves of both cytochromes, generating directionally in electron transfer from type I to type II cytochrome c(3), a phenomenon of obvious thermodynamic origin and consequences, but also with kinetic implications. The existence of processes like this occurring at complex formation may constitute a natural design of efficient redox chains.  相似文献   

19.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

20.
A hydrogen-bonded network is observed above the hemes in all of the high-resolution crystal structures of cytochrome oxidases. It includes water and a pair of arginines, R481 and R482 (Rhodobacter sphaeroides numbering), that interact directly with heme a and the heme a(3) propionates. The hydrogen-bonded network provides potential pathways for proton release. The arginines, and the backbone peptide bond between them, have also been proposed to form part of a facilitated electron transfer route between Cu(A) and heme a. Our studies show that mutations of R482 (K, Q, and A) and R481 (K) retain substantial activity and are able to pump protons, but at somewhat reduced rates and stoichiometries. A slowed rate of electron transfer from cytochrome c to Cu(A) suggests a change in the orientation of cytochrome c binding in all but the R to K mutants. The mutant R482P is more perturbed in its structure and is altered in the redox potential difference between heme a and Cu(A): +18 mV for R482P and +46 mV for the wild type (heme a - Cu(A)). The electron transfer rate between Cu(A) and heme a is also altered from 93000 s(-1) in the wild type to 50 s(-1) in the oxidized R482P mutant, reminiscent of changes observed in a Cu(A)-ligand mutant, H260N. In neither case is the approximately 2000-fold change in the rate accounted for by the altered redox potentials, suggesting that both cause a major modification in the path or reorganization energy of electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号