首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histoarchitectural changes of the uterine cervix allow its successful adaptation to different physiological conditions. In this study, we evaluated cell turnover in each cellular compartment of the uterine cervix in association with steroid hormone receptor expression in order to establish the range of physiological changes. Proliferation, apoptosis, and progesterone receptor (PR) and estrogen receptor alpha (ERalpha) expression were evaluated in cycling, pregnant, and postpartum rats. In estrus and diestrus II, ERalpha and PR expression exhibited variations according to the region evaluated. Proliferation and apoptosis showed a reciprocal pattern, the epithelium being the region with higher cell turnover. High apoptotic index (AI) in estrus was associated with the lowest ERalpha and the highest PR scores. During pregnancy, proliferation of the epithelium was the predominant event and AI was low. On Postpartum Day 1 (PPD1), proliferation decreased while apoptosis increased. As described for the estrous cycle, during pregnancy and PPD1, AI and ERalpha were negatively correlated. In the fibroblastic stroma, low proliferation was observed throughout pregnancy; however, there was a net increase in cell number because very few cells underwent apoptosis. No difference in ERalpha was observed in fibroblastic cells during pregnancy and postpartum; however, a great decrease of this receptor in the epithelial compartment was observed after delivery. Unlike cervical epithelium, PR was highly expressed in stromal cells. At term, a dramatic increase in epithelial PR was observed. While epithelial PR remained high on PPD1, a decrease was observed in muscle stroma. These results show that, in all stages studied, 1) ERalpha and PR have different patterns of expression with differential responses to signals that modulate proliferation and/or apoptosis depending on the cellular compartment, and 2) even though the epithelium is the region with the highest cell turnover, the fibroblastic and muscle stroma are active regions that have their own patterns of behavior.  相似文献   

2.
The present study was carried out to evaluate apoptosis in endometrium and to correlate these changes with the circulating levels of estradiol and progesterone in the mouse. Apoptosis was observed in various compartments of mouse uterus i.e. stroma, glandular epithelium and luminal epithelium depending on the stage of cycle. Stromal cell apoptosis was observed during various stages of cyclicity except on estrus day. Luminal epithelial cells showed apoptotic changes during all stages of cyclicity except on diestrus day. During metestrus, apoptosis was observed in glandular and luminal epithelia as well as stromal cells. Steroid antagonists such as tamoxifen and onapristone altered the apoptotic changes in the uterus. The results suggest that epithelial cell apoptosis is regulated by estrogen while stromal cell apoptosis is under the control of progesterone.  相似文献   

3.
4.
Uterine leiomyomas are responsive to the ovarian steroids, estrogen and progesterone; however, a mechanistic understanding of the role of these hormones in the development of this common gynecologic lesion remains to be elucidated. We have used the Eker rat uterine leiomyoma model to investigate how ovarian hormones regulate or promote the growth of these tumors. Proliferative and apoptotic rates were quantitated in normal uterine tissues and leiomyomas in response to endogenous ovarian steroids. In 2- to 4-mo-old animals, cell proliferation in the normal uterus corresponded with high serum levels of steroid hormones during the estrous cycle, and apoptosis occurred in the rat uterus in all cell types following sharp, cyclical declines in serum hormone levels. It is interesting that the responsiveness of uterine mesenchymal cells changed between 4 and 6 mo of age, with significant decreases in both proliferative and apoptotic rates observed in myometrial and stromal cells of cycling animals. Leiomyomas displayed much higher levels of proliferation than did age-matched myometrium; however, their apoptotic index was significantly decreased in comparison with normal myometrium. This disregulation between proliferative and apoptotic responses, which were tightly regulated during ovarian cycling in the normal myometrium, may contribute to the disruption of tissue homeostasis and underlie neoplastic growth of these tumors.  相似文献   

5.
6.
The expression of estrogen (ER) and progesterone receptors (PR) in the endometrium is regulated by steroid hormones. An increase in plasma estrogen leads to upregulation of the number of both steroid receptors, whereas a decrease in both receptors population is due to high concentration of plasma progesterone. To study the exact effect of different concentrations of beta-estradiol and progesterone on canine epithelial and stromal endometrial cells an in vitro model from dog uterus was developed and kept for 20 days. Material was obtained from healthy dogs, undergoing ovariohysterectomy. Endometrial epithelial and stromal cells were gained after collagenase treatment, followed by filtration steps. Electron microscopy and immunolabeling were used to study cell morphology and differentiation. Immunocytochemistry was used to determine proliferation rate (Ki-67), ER and PR status on Days 3, 8, 10, 13, and 20. Mitotic activity of both cells was stimulated with different concentrations of steroids and revealed high values until cells reached confluency. ER and PR expression in confluent layer from epithelial and stromal cells was upregulated with beta-estradiol. In addition progesterone significant downregulated both receptors population in stromal cells, whereas the reduction was less pronounced in epithelial cells. Results showed that our in vitro system is a useful tool to study the influence of beta-estradiol and progesterone on cell proliferation rate, ER and PR expression. The primary cell culture model helps to avoid experiments on living animals.  相似文献   

7.
Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already described influence on pregnancy disorders and therefore might provide a useful clinical tool in the future to prevent pregnancy complications provoked by inadequate implantation.  相似文献   

8.
Elevated progesterone concentration during pregnancy and use of progesterone-like contraceptives are known to reduce ovarian cancers. This study was undertaken to decipher whether or not there is any relationship between progesterone (also oestrogen)-mediated ovarian surface epithelium (OSE) apoptosis and expression of p53, a cell-cycle arresting protein and potential tumour suppressor. Immunohistochemical staining with cytokeratin confirmed epithelial nature of the cells in the OSE layer and inclusion cysts that invaginate inside stroma after ovulation takes place. The in situ apoptosis index was determined during oestrus, and at mid and late-pregnancy stages in heifers. Epithelia of both tissues exhibited significantly high nuclear staining, suggesting that these cells are aiming to apoptotic destruction. To further establish a role of progesterone, the OSE cells were exposed in vitro to two concentrations of oestrogen and progesterone. It was revealed that progesterone at both concentrations and oestrogen only at high concentration converted a large proportion of these cells apoptotic. The stimulatory effect of progesterone (and to some extent oestrogen) was also seen on p53 expression in the same cultivated OSE cells. The steroid dosage dependence for apoptosis and p53 expression was also somewhat similar. Assuming that progesterone action is mediated through p53-caused apoptosis as a mechanism to evade malignant transformation of OSE cells, p53 expression at mRNA and protein level was investigated in the OSE layer in proximity to stroma, antrum and corpus luteum (CL). In cycling animals CL produces a large amount of progesterone and also oestrogen to maintain the post-ovulatory cycle and to suppress the gonadotropin production. Hence, cells undergoing re-epithelialization and which are in contact with CL were expected to undergo maximum apoptotic modification. Indeed we got the maximum p53/p53 gene expression in these cells. We conclude that progesterone during cycling and pregnancy may reduce the risk of developing ovarian cancer by ceasing cell cycle and diverting damaged and mutagenized OSE cells for apoptosis, and the process may be mediated through elevated p53 synthesis. However, it is also possible that progesterone and p53-induced apoptosis may be entirely different cancer suppressive actions but coincidently happening together.  相似文献   

9.
10.
Structural and functional changes to the uterus associated with maintenance of pregnancy are controlled primarily by steroid hormones such as progesterone. We tested the hypothesis that progesterone regulates uterine structural changes during pregnancy in the viviparous skink, Pseudemoia entrecasteauxii, by treating pregnant females with the progesterone receptor antagonist mifepristone at different stages of pregnancy. Expression and distribution of progesterone receptor was determined using Western blot and immunohistochemistry. During early pregnancy, mifepristone treatment resulted in altered uterine epithelial cell surface morphology and high embryo mortality, but did not affect females at mid and late stages of pregnancy. Females treated with mifepristone in early pregnancy exhibited abnormal uterine epithelial cell morphology such as lateral blebbing and presence of wide gaps between cells indicating loss of intercellular attachment. Chorioallantoic membranes of the embryo were not affected by mifepristone treatment. Two isoforms (55 kDa and 100 kDa) of progesterone receptor were identified using immunoblots and both isoforms were localized to the nucleus of uterine epithelial cells. The 55 kDa isoform was expressed throughout pregnancy, whereas the 100 kDa isoform was expressed during mid and especially late pregnancy. In P. entrecasteauxii, mifepristone may prevent successful embryo attachment in early pregnancy through its effects on uterine epithelial cells but may have little effect on pregnancy once the maternal-embryo structural relationship is established.  相似文献   

11.
Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma‐amino butyric acid (GABA) and the GABA A‐type receptor π subunit (GABPR) in the early‐pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A‐type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A‐type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter‐implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A‐type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S‐phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A‐type receptors by down‐regulating cyclin D3 level. Mol. Reprod. Dev. 80: 59–69, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
Each ovarian cycle, the mammary gland epithelium rotates through a sequence of hormonally regulated cell proliferation, differentiation and apoptosis. These studies investigate the role of macrophages in this cellular turnover. Macrophage populations and their spatial distribution were found to fluctuate across the cycle. The number of macrophages was highest at diestrus, and the greatest number of macrophages in direct contact with epithelial cells occurred at proestrus. The physiological necessity of macrophages in mammary gland morphogenesis during the estrous cycle was demonstrated in Cd11b-Dtr transgenic mice. Ovariectomised mice were treated with estradiol and progesterone to stimulate alveolar development, and with the progesterone receptor antagonist mifepristone to induce regression of the newly formed alveolar buds. Macrophage depletion during alveolar development resulted in a reduction in both ductal epithelial cell proliferation and the number of alveolar buds. Macrophage depletion during alveolar regression resulted in an increased number of branch points and an accumulation of TUNEL-positive cells. These studies show that macrophages have two roles in the cellular turnover of epithelial cells in the cycling mammary gland; following ovulation, they promote the development of alveolar buds in preparation for possible pregnancy, and they remodel the tissue back to its basic architecture in preparation for a new estrous cycle.  相似文献   

14.
Breast cancer is a hormone-based disease with numerous factors contributing to the lifetime risk of developing the disease. While breast cancer risk is reduced by nearly 50% after one full term pregnancy, women over the age of 25 have a significantly greater risk of developing breast cancer immediately following parturition compared to their nulliparous counterparts. It is widely presumed that the increased risk of developing breast cancer following pregnancy is due to the ability of pregnancy-associated hormones to promote the further proliferation of an initiated target cell population. It is surprising however, that the majority of breast cancers that develop following pregnancy lack appreciable expression of either the estrogen or progesterone receptors. This important observation suggests that if hormones play a part in promoting breast cancer following pregnancy, they may not be doing so through direct binding to hormone receptor molecules expressed by breast cancer cells.

To reconcile this conceptual conflict we investigated the hypothesis that steroid hormones promote the outgrowth of ER-negative cancers by influencing host cell types distinct from the breast epithelium itself. We demonstrated that increasing the levels of circulating estrogens is sufficient to promote the formation and progression of ER-negative cancers while, pharmacologically inhibiting estrogen synthesis following pregnancy prevents ER-negative tumor formation. Moreover, we demonstrate that the effects of estrogen act via a systemic increase in host angiogenesis, in part through increased mobilization and recruitment of bone marrow stromal derived cells into sites of angiogenesis and to a growing tumor mass. Taken together, these data suggest that estrogen may promote the growth of ER-negative cancers by acting on cells distinct from the cancer cells to stimulate angiogenesis.  相似文献   


15.
An immunoperoxidase staining technique was used to localize receptors for progesterone and estrogen in the uterus of the mare. Specific staining for receptors was limited to cell nuclei. During estrus, stromal cells tended to stain more intensely for both receptor types than myometrial cells or luminal and glandular epithelial cells. During diestrus, staining intensities in stromal and myometrial cells tended to decrease. Staining intensities of epithelial cells were not affected by the cycle stage. Early pregnancy did not markedly affect the staining intensities of pregnant mares compared with the nonpregnant mares on Day 14 of diestrus. In mares susceptible to endometritis from which samples were taken during diestrus, stromal and myometrial staining for estrogen receptors was more intense than in endometrium from genitally-normal mares.  相似文献   

16.
In mouse, decidualization is characterized by the proliferation of stromal cells and their differentiation into specialized type of cells (decidual cells) with polyploidy, surrounding the implanting blastocyst. However, the mechanisms involved in these processes remain poorly understood. Using multiple approaches, we have examined the role of Adam12 in decidualization during early pregnancy in mice. Adam12 is spatiotemporally expressed in decidualizing stromal cells in intact pregnant females and in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Adam12 is upregulated after progesterone treatment, which is primarily mediated by nuclear progesterone receptor. In a stromal cell culture model, the expression of Adam12 gradually rises with the progression of stromal decidualization, whereas the attenuated expression of Adam12 after siRNA knockdown significantly blocks the progression of decidualization. Our study suggests that Adam12 is involved in promoting uterine decidualization during pregnancy.  相似文献   

17.
During neonatal and juvenile life, mammalian uteri undergo extensive structural and functional changes, including uterine gland differentiation and development. In sheep and mice, inhibition of neonatal uterine gland development induced by progestin treatment led to a permanent aglandular uterine phenotype and adult infertility, suggesting that this strategy might be useful for sterilizing dogs and other companion animals. The goal of this study was to define temporal patterns of adenogenesis (gland development), cell proliferation, and progesterone and estrogen receptor expression in uteri of neonatal and juvenile dogs as a first step toward determining whether neonatal progestin treatments might be a feasible contraceptive approach in this species. Uteri obtained from puppies at postnatal wk 1, 2, 4, 6, or 8 were evaluated histologically and immunostained for MKI67, a marker of cell proliferation, estrogen receptor-1, and progesterone receptor. Adenogenesis was under way at 1 wk of age, as indicated by the presence of nascent glands beginning to bud from the luminal epithelium, and rapid proliferation of both luminal epithelial and stromal cells. By Week 2, glands were clearly identifiable and proliferation of luminal, glandular, and stromal cells was pronounced. At Week 4, increased numbers of endometrial glands were evident penetrating uterine stroma, even as proliferative activity decreased in all cell compartments as compared with Week 2. Whereas gland development was most advanced at Weeks 6 to 8, luminal, glandular, and stromal proliferation was minimal, indicating that the uterus was nearly mitotically quiescent at this age. Both estrogen receptor-1 and progesterone receptor were expressed consistently in uterine stromal and epithelial cells at all ages examined. In summary, canine uterine adenogenesis was underway by 1 wk of age and prepubertal glandular proliferation was essentially complete by Week 6. These results provided information necessary to facilitate development of canine sterilization strategies based on neonatal progestin treatments designed to permanently inhibit uterine gland development and adult fertility.  相似文献   

18.
19.
Though the decidua serves a critical function in implantation, the hormonal regulated pathway in decidualization is still elusive. Here we describe in detail the regional distribution and the effects of progesterone receptors (PGR), estrogen receptors (ESR), and MAPK activation on decidualization. We showed an increase in PGR A, PGR B, ESR1, and phosphorylated MAPK3-1 proteins (p-MAPK3-1), but not in ESR2, in the decidual tissue up to Day 8 of pregnancy. PGR was predominantly found in the nuclei of mesometrial decidual cells and of undifferentiated stromal cells where it colocalizes with ESR2 and ESR1. In the antimesometrial decidua, all the receptors showed cytoplasmic localization. MAPK was activated exclusively in undifferentiated stromal cells of the junctional zone between the antimesometrial and mesometrial decidua and at the border of the antimesometrial decidua. Treatment with the progesterone antagonist onapristone and/or the estrogen antagonist faslodex reduced the extent of decidual tissue and downregulated the levels of PGR and ESR1. The expression level of ESR2 was affected only by the progesterone receptor antagonist, while neither the antiprogestin nor the antiestrogen significantly modified the p-MAPK3-1 level. The inhibition of MAPK3-1 phosphorylation by PD98059 impaired the extent of decidualization and the closure reaction of the implantation chamber, and significantly downregulated ESR1. These results confirm a role of both steroid receptors in the growth and differentiation of the different decidual regions and suggest a new function for p-MAPK3-1 in regulating expression levels of ESR1, thereby maintaining the proliferation capacity of stromal cells and limiting the differentiation process in specified regions of decidual tissues.  相似文献   

20.
The role of estrogen in promoting mammary stem cell proliferation remains controversial. It is unclear if estrogen receptor (ER)-expressing cells have stem/progenitor activity themselves or if they act in a paracrine fashion to stimulate stem cell proliferation. We have used flow cytometry to prospectively isolate mouse mammary ER-expressing epithelial cells and shown, using analysis of gene expression patterns and cell type-specific markers, that they form a distinct luminal epithelial cell subpopulation that expresses not only the ER but also the progesterone and prolactin receptors. Furthermore, we have used an in vivo functional transplantation assay to directly demonstrate that the ER-expressing luminal epithelial subpopulation contains little in vivo stem cell activity. Rather, the mammary stem cell activity is found within the basal mammary epithelial cell population. Therefore, ER-expressing cells of the mammary epithelium are distinct from the mammary stem cell population, and the effects of estrogen on mammary stem cells are likely to be mediated indirectly. These results are important for our understanding of cellular responses to hormonal stimulation in the normal breast and in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号