首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

2.
To investigate the role of helmet formation in defense against predation, laboratory experiments were used to analyze the effects of morphological changes in Daphnia on susceptibility to Chaoborus predation. Behavioral observations of Chaoborus preying on helmeted and non-helmeted Daphnia suggest pre-contact advantages for helmeted prey but post-contact advantages for non-helmeted prey. Helmeted Daphnia are better at evading capture by Chaoborus but may also be more easily handled by the predator. Swimming behavior of the prey, which is influenced by the presence of a tailspine, may affect Chaoborus strike distance. These results re-emphasize the potential hydromechanical importance of body shape changes in defense against predation.  相似文献   

3.
Piet Spaak 《Hydrobiologia》1995,307(1-3):283-289
Recent studies have shown that Daphnia hybrids are intermediate to their parental species for several life history traits, and that they combine advantageous traits of the parental species, thereby decreasing their risk of being preyed upon by planktivorous fish. In this study D. galeata, D. cucullata and their interspecific hybrid are compared with respect to cyclomorphosis and juvenile growth as a potential mechanism to avoid invertebrate predation. Helmets and tail spines are known to reduce predation risk, whereas fast juvenile growth reduces the period that Daphnia are vulnerable to predation. In laboratory cultures, I tested the hypothesis that, with regard to cyclomorphosis, juvenile hybrids are more comparable to the juveniles of D. cucullata, and with respect to growth rate, they are more comparable to D. galeata. The hybrid did not differ significantly from D. galeata in the time needed to reach 0.9 mm body length. In contrast, the relative spine and helmet length of juvenile hybrids were more comparable with those of D. cucullata, whereas in adult instars these characters were more similar to D. galeata. Thus during the first juvenile instars, the hybrids combine the relative long helmet and spine of D. cucullata, with the faster growth of D. galeata. This combination of characteristics might reduce hybrid vulnerability to invertebrate predation in field situations.  相似文献   

4.
Morphological responses to the presence of predator info-chemicals havebeen described for many Daphnia (Cladocera) species, butD. galeata is generally considered to exhibit almost nomorphological changes that could increase its fitness under predation.Therefore, the aim of our study was to examine the nature and magnitude ofmorphological responses of D. galeata to their predatorsindetail and assess their potential role in decreasing the predation threat. Twoclones of Daphnia were exposed to predator info-chemicals(kairomones) from perch, a fish (Perca), and a phantommidge larvae (Chaoborus) an invertebrate, and a kairomone mixture fromboththese organisms. Laboratory life-table experiments were carried out and fiveparameters characterising the body shape of the daphnids were measured: helmetlength, head- and carapace width, eye diameter and body size. The last-namedthree parameters did not differ significantly between the clones or thetreatments. The differences found between the clones were significant for headwidth and helmet length, but only in combination with the treatment effects.Ourresults on genotype-dependent phenotypic plasticity indicated that, althoughphenotypic plasticity is present, the clonal composition of aDaphnia population can be altered by selection on themorphotype. This potential for a change in clonal frequencies is given by thedifferences measured between the two clones in head width and helmet length,altering the curvature of the Daphina body in response tokairomone presence.  相似文献   

5.
The cyclomorphic change of head and tailspine of Daphnia cucullatahas been analysed morphometrically and compared with temporalanalyses of enzyme variability. During June, round-headed animalsare rapidly replaced by specimens with high helmets; the rateof increase of the relative helmet length is more rapid thanthe rate of decrease later in the year. The relative sizes ofhelmet and tail spine are not always coupled. The tailspinelength remains approximately the same year round and grows withnegative allometry, so that small animals have the relativelylongest spines. In contrast, the helmet grows in a positivelyallometric fashion and exhibits high seasonal variation. Helmetgrowth is strongly correlated with water temperature but notwith food abundance. The morphometric results are consistentwith the hypothesis that helmet formation is a response to fishpredation while the tail spine provides protection against invertebratepredators. There is no indication of changes in the gene orgenotype frequencies at two loci during the period of rapidmorphological change. Thus cyclomorphosis apparently appearsin the absence of clonal replacement.  相似文献   

6.
The composition, structure and temporal variation of ectomycorrhizal (EM) communities associated with mountain avens (Dryas octopetala) in grass heaths of the Burren, western Ireland were assessed by using soil core sampling in two permanent plots and 30 other sites (196 cores in total). Of the 34 different EM types observed, 11 were common and constituted over 80% of the EM biomass. Four EM types, Craterellus lutescens, Tomentella sp., Dryadirhiza fulgens and Cenococcum geophilum were the most abundant as measured by EM length and frequency of occurrence in cores. The species profile and relative abundances were very similar in cores from the permanent plots and different sites in the Burren, indicating that they were all representative of the same EM community. The below-ground EM community in both plots was compared with production of basidiomes, and the latter was found to be an unreliable indicator of EM community structure. Temporal variation in the EM community was assessed by repeated core sampling of the two permanent plots over a 14-month period (between March 1998 and May 1999). No statistically significant shifts in EM abundance were found between sampling dates, probably as a consequence of the large variation in EM abundance between core samples over the sampling period. No significant relationship was found between rainfall, soil moisture or soil temperature and fluctuations in EM abundance. Patterns of total EM abundance and fluctuations in EM diversity were strongly correlated between the two permanent plots over the sampling period. Temporal fluctuations in the dominant EM type, Craterellus lutescens, were similar in both plots with respect to mycorrhizal length, biomass and relative abundance, and the patterns between both plots were positively correlated. EM diversity was negatively correlated with biomass of ectomycorrhizas of Craterellus lutescens in both plots, but it was significant only in plot 1.  相似文献   

7.
The annual cycles of Daphnia carinata in three fish-free ponds in southern New Zealand (Quarry, Taieri and Raupo Ponds) are described. Although breeding was continuous, the populations were frequently dominated by distinct cohorts and there was a sexual phase in spring. Growth rates, particularly in Quarry Pond, were often slow, and clutch sizes generally small. Egg and neonate sizes changed seasonally, but changes were not closely related to clutch sizes and body lengths. In Taieri Pond and Raupo Pond some D. carinata grew to 6.14 mm and carried clutches of up to 154 eggs. The potentially high fecundity associated with large size makes D. carinata a good coloniser, but our studies showed that it also survives well in poor food conditions by growing slowly and producing only 1–2 eggs per clutch. D. carinata showed marked seasonal polymorphism in tailspine length and development of head crests. In winter, crests were absent and tailspines were short and varied little with body length. Crests were first apparent, and tailspines began to elongate, in early spring, before the first appearance of a notonectid, Anisops wakefieldi. By midsummer, tailspines had increased markedly with body length but the slope of the relationship declined in autumn. Laboratory trials showed that both tailspine length and crest development increased in the presence of Anisops. These increases may be due to water-soluble factor(s) produced by Anisops.  相似文献   

8.
Seasonal morphological changes in three Daphnia species were followed over a two-year period in two lakes that differ in invertebrate and fish pressure. Whereas the morphology of D. hyalina, the biggest of the three species, varied little from season to season, D. cucullata, the smallest, exhibited the most pronounced seasonal changes in head height/carapace length ratio. The pattern of seasonal changes of body proportions was similar in all size classes and isometric growth of the head was reported for D. cucullata. Unlike the head, tail spine length/carapace length ratio almost did not vary seasonally. Strong negative allometry of tail spine growth was observed. These results are consistent with the hypothesis that helmets and tail spines provide protection against invertebrates in the two smallest, thus most endangered species.  相似文献   

9.
Schulz  Kimberly L.  Yurista  Peder M. 《Hydrobiologia》1998,380(1-3):179-193
The traditional view of predaceous zooplankton is that they prefer small-bodied prey, are hindered by morphological anti-predator defenses, and have a minor influence on zooplankton communities when fish are present. We performed a series of experiments with the large-bodied onychopod (cladoceran) Bythotrephes cederstroemi, in which we incubated this predator with known prey to determine prey preference and predation rates. We also performed an allozyme analysis of prey tissue in the gut of B. cederstroemi collected from several stations around Lake Michigan to determine what prey types are chosen in the field. We found that B. cederstroemi does not fit the standard invertebrate predator mold: adult B. cederstroemi prefer large (>2.0 mm) Daphnia pulicaria over smaller individuals; the elongated tailspine and helmet of Daphnia galeata mendotae are not effective deterrents to B. cederstroemi predation; and B. cederstroemi is a generalist predator with the potential to consume a significant portion of cladoceran production in Lake Michigan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In nature most organisms have to manage conflicting demands of food gathering, predator avoidance, and finding a favorable abiotic environment (oxygen, temperature, etc.) in order to maximize their fitness. In the vertical water column of lakes with high solar ultraviolet radiation (UV) and invertebrate predators, zooplankton face two particularly strong and conflicting selective pressures. During daylight hours invertebrate predators often induce an upward vertical migration of zooplankton prey while potentially damaging UV forces a downward migration. We used 2.2 m long columns suspended vertically in a lake to conduct 2×2 factorial experiments to examine patterns of depth selection behavior by zooplankton in the presence and absence of both the invertebrate predator Chaoborus and UV. We hypothesized that Chaoborus and UV both affect the distribution of zooplankton and a combination of both factors would lead to a narrowing of depth distribution. We found that when Chaoborus were present zooplankton tended to be distributed at shallower depths in the columns, while in the presence of UV they exhibited a deeper distribution. Chaoborus themselves were always found near the bottom of the columns regardless of the UV treatment. Simultaneous exposure to predators and UV resulted in a peak of zooplankton (especially Daphnia catawba) distribution at intermediate depths. In a significant number of cases, depth range was narrowed in response to Chaoborus, UV, or both.  相似文献   

11.
Yurewicz KL 《Oecologia》2004,138(1):102-111
Behavioral and morphological traits often influence a key trade-off between resource acquisition and vulnerability to predation, and understanding trait differences between species can provide critical insight into their interactions with other species and their distributions. Such an approach should enhance our understanding of the criteria for coexistence between species that can interact through both competition and predation (i.e. intraguild predators and prey). I conducted a common garden experiment that revealed strong differences between three guild members (larval salamanders Ambystoma laterale, A. maculatum, and A. tigrinum) in behavior, morphology, and growth in the presence and absence of a shared top predator (the larval dragonfly Anax longipes). All three species also reduced their activity and modified their tail fin depth, tail muscle length, and body length in response to non-lethal Anax. Species that act as intraguild predators were more active and could grow faster than their intraguild prey species, but they also suffered higher mortality in laboratory predation trials with Anax. I also used survey data from natural communities to compare the distribution of Ambystoma species between ponds differing in abiotic characteristics and predatory invertebrate assemblages. An intraguild prey species (A. maculatum) was found more reliably, occurred at higher densities, and was more likely to persist late into the larval period in ponds with more diverse invertebrate predator assemblages. Taken together, these results indicate that top predators such as Anax may play an important role in influencing intraguild interactions among Ambystoma and ultimately their local distribution patterns.  相似文献   

12.
Weber  A.  Vesela  S.  Repka  S. 《Hydrobiologia》2003,491(1-3):273-287
In recent years, some studies addressing the modification of phenotypically plastic traits of Daphnia in the presence of chemical cues (kairomones) from invertebrate predators have reported a lack of trade-off among resource allocation of traditional life history traits (growth and reproduction) (Spitze, 1991; Black, 1993; Weber & Declerck, 1997). In this study, we term this finding the `Chaoborus paradox'. The Chaoborus paradox contrasts with the generally accepted theory that facultative changes in life history traits are associated with costs or a modification in resource allocation. In order to unravel the Chaoborus paradox, we have tested four groups of traits that may explain resource allocation. These were (1) the trade-off between present and future reproduction, (2) reduced growth of morphological features (body length, helmet length, spine length, carapace width) prior to maturity (pre-maturity) or (3) during the first adult instar (at maturity), and (4) an increase in feeding and assimilation rates to fuel the amount of resources available to the organism. As experimental animal we used Daphnia galeata (Cladocera) and to simulate invertebrate predation we used the Chaoborus (phantom midge larvae) kairomone. A clear trade-off existed between present and future reproduction. Survival was less in the presence of Chaoborus kairomone and therefore more resources could be channelled into growth and reproduction early in life at the cost of dying younger when compared to control animals. The other groups of traits (reduced growth of morphological features and an increase the amount of resources) offer partial solutions to the Chaoborus paradox for single clones only and not for the whole population.  相似文献   

13.
Mytilus chilensis is an invertebrate that competes for space with the alga Gracilaria chilensis in farmed areas in Chile and, for this reason, is considered a contaminant organism. Mussel beds are considered to play a role in the regeneration of nitrogen and, as a consequence, they could be an important source of ammonium for the algae. In this study, we manipulated the mussel cover in experimental plots, creating replicated areas with 0%, 30% and 60% coverage. In half of the plots the mussels were killed with a gas torch so their effect would be mechanical, without nutrient regeneration. After 15 days, each plot was planted with 12 G. chilensis bundles (100 g each) per square meter. Ammonium concentrations increased significantly in the waters around the mussel bed in contrast to areas without mussels or dead mussels. Mussel cover had a significant negative effect on the length of the G. chilensis bundles planted in the experimental plots. However, no significant differences were detected between experimental quadrats with live mussels and those with dead mussels during a 5 month period. These results indicate that the mechanical effect of the mussel can, to some extent, be responsible for the decline in G. chilensis abundance in farms where mussel beds have been established.  相似文献   

14.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   

15.
Terborgh  J.  Losos  E.  Riley  M. P.  Riley  M. Bolaños 《Plant Ecology》1993,107(1):375-386
We studied the pre-germination loss of seeds to invertebrate and vertebrate seed predators of 5 species of Amazonian trees (Astrocaryum macrocalyx—Palmae; Bertholletia excelsa—Lecithydaceae; Calatola venezuelana—Icacinaceae; Dipteryx micrantha—Leguminosae (Papilionoidae); Hymenaea courbaril-Leguminosae (Caesalpinoidae)). These five species were selected from a large tree flora on several criteria. All possess large (3–10 cm) well-protected seeds that might plausibly be attractive to mammalian seed predators. The reproductive biology of three of the species, or close congeners, had been studied elsewhere in the Neotropics (Astrocaryum, Dipteryx, Hymenaea); one is important to the economy of southeastern Peru (Bertholletia); and one, despite large and apparently edible seeds, appeared to suffer no pre-germination loss to predators (Calatola). We conducted the research in mature forests in the Manu National Park of southeastern Peru where mammal densities are unperturbed by human activities. Densities of adult trees of the five species in our area range from very high (>30 per ha: Astrocaryum) to very low (1 per ha: Hymenaea).Loss of seeds to all causes, and to mammalian seed predators in particular, was determined for seeds placed in 2-square meter mammal exclosures and in open controls located at 10 m (near) and 50 m (far) from a large mature individual of the target species (with minor variations in the design for Astrocaryum and Calatola). The exclosures were of two types: impermeable—designed to exclude all mammals, but not invertebrate seed predators, and semipermeable—designed to admit small (<500 g), but not large mammals. Experimental and control plots were stocked with apparently viable seeds during the dry-wet transition period (October–November) and scored one year later.A significant distance effect (higher predation near vs far from a large conspecific adult) was found in only one of the species (Astrocaryum), the only one to be attacked with high frequency by invertebrate seed predators. The absence of any detectable distance effect attributable to mammals suggests that mammals, over the course of a year, thoroughly search the forest floor for seeds. Invertebrates may thus be responsible for most pre-germination distance (density) effects. With respect to the treatments, we found three qualitatively distinct results: seeds of three species (Astrocaryum, Bertholletia, Dipteryx) were significantly protected by the impermeable, but not semipermeable exclosures, implicating small mammals in seed loss; the seeds of one species (Hymenaea) were significantly protected by exclosures of both types, implicating large mammals; and the seeds of one species (Calatola) exhibited 100% survival, whether or not protected by exclosures.The importance of large mammals as seed predators is generally underestimated in these experiments because semipermeable exclosures may serve as foraging reserves for small mammals. Finally, we noted no relationship between the intensity of mammalian seed predation (as suggested by the survival of unprotected seeds) and the abundance of adults of the five species in the environment. The diversity of results obtained for the five species reveals that large-seeded tropical trees may display a wide range of demographic patterns, and points to the likely importance of post-germination bottlenecks in the population biology of many species, even those that may experience severe pre-germination seed loss.  相似文献   

16.
Vertebrate herbivores generally have greater effects than invertebrates on plants. However, few studies have investigated the effects of both invertebrate and vertebrate herbivores on a single plant species. In New Zealand, nationwide declines in mistletoe populations have often been attributed to possum herbivory, but never to insect herbivory. The main goal of the present study was to document levels of vertebrate and invertebrate herbivory on endemic New Zealand mistletoe plants to suggest whether herbivory is leading to mistletoe decline. In the present study, the annual amount of leaf loss from herbivory by the brushtail possum (Trichosurus vulpecula), insect herbivory and leaf abscission were measured in two populations each of three mistletoe species (Alepis flavida, Peraxilla colensoi, and Peraxilla tetrapetala, Loranthaceae). In two populations of each species from February 1997 to February 1998, abscission accounted for the most leaf loss (range 10–84% of total mean leaf area, mean 33%), whereas insects and possums usually removed small and similar amounts (less than 3%). Possum browse caused large amounts of abscission in only one population (A. flavida at Eglinton). Observed possum browse was more heterogeneous than insect browse among branches within a plant (possum coefficient of variation = 2.63, insect CV = 1.98, P < 0.001), among plants in a population (possum CV = 2.15, insect CV = 0.69, P < 0.001), and between populations (possum CV = 1.36, insect CV = 1.09). Moreover, insects damaged 100% of the study plants but never removed more than 16% of leaf area on a single plant, whereas possums only browsed 32% of the study plants but severely defoliated some plants. Thus, while the mean amount of biomass removed across a population may have important consequences for mistletoe survival, the effect of possums on mistletoe populations may also depend on the heterogeneity of browse among individuals in the population.  相似文献   

17.
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.  相似文献   

18.
The cladoceran Daphnia ambigua was exposed to both the insecticide carbaryl and the kairomone released from the predator Chaoborus simultaneously, and its morphological changes were analyzed. Daphnia developed helmets in response to the kairomone, but not in response to carbaryl at low (sublethal) concentrations (1–3 µg 1–1). However, the carbaryl enhanced the development of high helmets and prolonged the maintenance period of the helmets over instars in the presence of the kairomone. These results suggest that sublethal concentrations of the insecticide alter predator-prey interactions by inducing helmet formation in Daphnia, which may reduce vulnerability of the Daphnia to predation.  相似文献   

19.
This paper describes the spatial and temporal variation of aquatic invertebrate assemblages associated with root masses of Eichhornia crassipes collected at 12 sites between July 2000 and June 2002 in the Alvarado Lagoonal System (ALS), Veracruz, Mexico. A total of 96 taxa were registered; acari showed the highest species richness with 15 taxa followed by decapods (14), mollusks (12), amphipods (9), and isopods (7). Freshwater organisms represented 44% of the total taxa, 53% belonged to estuarine taxa, and marine taxa 3%. The isopod Munna sp. was the dominant taxon throughout the entire study period, followed by Ephemeroptera, Hyalella azteca, Chydorus sp., Physella sp., Podura aquatica, and Fossaria sp. during the low salinity period (July–September 2001, 1.6–3.8 psu), and Neritina virginea, Cassidinidea ovalis, Macrobrachium acanthurus and Melita longisetosa during the high salinity period (March–May 2001 9.7–12.7 psu and April–May 2002, 8.2–8.9 psu). A spatial gradient of species richness and diversity was registered for the freshwater organisms. Additionally, the spatial and temporal patterns of invertebrate densities could be explained due to the movements of Eichhornia crassipes mats through the system, and the temporal variation of environmental variables such as salinity, dissolved oxygen, and turbidity.  相似文献   

20.
Synopsis We compared survival, growth, and swimming performance of two size classes of age-0 largemouth bass, Micropterus salmoides, in the spring after being fed diets of bluegill, Lepomis macrochirus, fathead minnows, Pimephales promelas, or invertebrate prey during the winter. Regardless of prey assemblage, survival was uniformly high and independent of size. Length, wet- and dry-mass, and condition was also similar among treatments for both size classes. However, variation in individual performance differed, with the lowest variability in growth occurring among small age-0 largemouth bass in the invertebrate only treatment. Absolute and length corrected swimming speeds of largemouth bass were highest for invertebrate prey assemblages, intermediate for fathead minnow prey, and lowest for bluegill prey. The patterns in growth and spring swimming performance likely reflect the varied nutritive quality of different prey, the ability of largemouth bass to capture different prey, and competition with the piscine prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号