首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.  相似文献   

2.
When old adults participate in a strength-training program with heavy loads, they experience an increase in muscle strength and an improvement in the steadiness of submaximal isometric contractions. The purpose of this study was to determine the effect of light- and heavy-load strength training on the ability of old adults to perform steady submaximal isometric and anisometric contractions. Thirty-two old adults (60-91 yr) participated in a 4-wk training program of a hand muscle. Both the light- and heavy-load groups increased one-repetition maximum and maximal voluntary contraction (MVC) strength and experienced similar improvements in the steadiness of the isometric and shortening and lengthening contractions. The increase in MVC strength was greater for the heavy-load group and could not be explained by changes in muscle activation. Before training, the lengthening contractions were less steady than the shortening contractions with the lightest loads (10% MVC). After training, there was no difference in steadiness between the shortening and lengthening contractions, except with the lightest load. These improvements were associated with a reduced level of muscle activation, especially during the lengthening contractions.  相似文献   

3.
The purpose of the study was to determine the association between steadiness and activation of the agonist and antagonist muscles during isometric and anisometric contractions. Young (n = 14) and old (n = 15) adults used the first dorsal interosseus muscle to perform constant-force and constant-load tasks (2.5, 5, 20, 50, and 75% maximum) with the left index finger. Steadiness was quantified as the coefficient of variation of force and the SD of acceleration normalized to the load lifted. The old adults were less steady at most target forces with isometric contractions (2.5, 5, and 50%) and with most loads during the anisometric contractions (2.5, 5, and 20%). Furthermore, the old adults were less steady when performing lengthening contractions (up to 50%) compared with shortening contractions, whereas there was no difference for young adults. The reduced steadiness exhibited by the old adults during these tasks was not associated with differences in the average level of agonist muscle electromyogram or with coactivation of the antagonist muscle.  相似文献   

4.
Exercise training programs can increase strength and improve submaximal force control, but the effects of yoga as an alternative form of steadiness training are not well described. The purpose was to explore the effect of a popular type of yoga (Bikram) on strength, steadiness, and balance. Young adults performed yoga training (n = 10, 29 +/- 6 years, 24 yoga sessions in 8 weeks) or served as controls (n = 11, 26 +/- 7 years). Yoga sessions consisted of 1.5 hours of supervised, standardized postures. Measures before and after training included maximum voluntary contraction (MVC) force of the elbow flexors (EF) and knee extensors (KE), steadiness of isometric EF and KE contractions, steadiness of concentric (CON) and eccentric (ECC) KE contractions, and timed balance. The standard deviation (SD) and coefficient of variation (CV, SD/mean force) of isometric force and the SD of acceleration during CON and ECC contractions were measured. After yoga training, MVC force increased 14% for KE (479 +/- 175 to 544 +/- 187 N, p < 0.05) and was unchanged for the EF muscles (219 +/- 85 to 230 +/- 72 N, p > 0.05). The CV of force was unchanged for EF (1.68 to 1.73%, p > 0.05) but was reduced in the KE muscles similarly for yoga and control groups (2.04 to 1.55%, p < 0.05). The variability of CON and ECC contractions was unchanged. For the yoga group, improvement in KE steadiness was correlated with pretraining steadiness (r = -0.62 to -0.84, p < 0.05); subjects with the greatest KE force fluctuations before training experienced the greatest reductions with training. Percent change in balance time for individual yoga subjects averaged +228% (19.5 +/- 14 to 34.3 +/- 18 seconds, p < 0.05), with no change in controls. For young adults, a short-term yoga program of this type can improve balance substantially, produce modest improvements in leg strength, and improve leg muscle control for less-steady subjects.  相似文献   

5.
This study compared the amount of contralateral activity produced in a homologous muscle by young (18-32 yr) and old (66-80 yr) adults when they performed unilateral isometric and anisometric contractions with a hand muscle. The subjects were not aware that the focus of the study was the contralateral activity. The tasks involved the performance of brief isometric contractions to six target forces, slowly lifting and lowering six inertial loads, and completing a set of 10 repetitions with a heavy load. The unintended force exerted by the contralateral muscle during the isometric contractions increased with target force, but the average force was greater for the old adults (means +/- SD; 12.6 +/- 15.3%) compared with the young adults (6.91 +/- 11.1%). The contralateral activity also increased with load during the anisometric contractions, and the average contralateral force was greater for the old subjects (5.28 +/- 6.29%) compared with the young subjects (2.10 +/- 3.19%). Furthermore, the average contralateral force for both groups of subjects was greater during the eccentric contractions (4.17 +/- 5.24%) compared with the concentric contractions (3.20 +/- 5.20%). The rate of change in contralateral activity during the fatigue task also differed between the two groups of subjects. The results indicate that old subjects have a reduced ability to suppress unintended contralateral activity during the performance of goal-directed, unilateral tasks.  相似文献   

6.
The purpose of this study was to examine the ability to control knee-extension force during discrete isometric (IC), concentric (CC), and eccentric contractions (EC) in 24 young (mean age +/- SD = 25.3 +/- 2.8 yr) and 24 old (mean age +/- SD = 73.3 +/- 5.5 yr) healthy and active individuals. Subjects were to match a parabola with a time to peak force of 200 ms during IC, CC, and EC at six target levels of force [20, 35, 50, 65, 80, and 90% of the maximum voluntary contraction (MVC)]. ICs were performed at 90 degrees of knee flexion, whereas CCs and ECs ranged from 90 to 80 degrees of knee flexion (0 degrees is full extension) at a slow velocity (25 degrees /s). Results showed that subjects produced similar MVC forces for the three types of contractions. Young subjects produced greater MVC forces than old subjects, and within each age group, men produced greater force than women. The variability (standard deviation) of peak force and impulse in absolute values was greater for young compared with old subjects. When variability was normalized to the force produced [coefficient of variation (CV)], however, old subjects exhibited greater CV than young subjects for peak force and impulse. Both the standard deviation and CV of time to peak force and impulse duration were greater for the old adults. In general, ECs were more variable than ICs and CCs, and old adults exhibited greater CV compared with young adults during rapid, discrete ICs, CCs, and particularly ECs of the quadriceps.  相似文献   

7.
The purpose of this study was to examine the effect of exercise-induced damage of the elbow flexor muscles on steady motor performance during isometric, shortening, and lengthening contractions. Ten healthy individuals (age 22+/-4 yr) performed four tasks with the elbow flexor muscles: a maximum voluntary contraction, a one repetition maximum (1 RM), an isometric task at three joint angles (short, intermediate, and long muscle lengths), and a constant-load task during slow (approximately 7 degrees/s) shortening and lengthening contractions. Task performance was quantified as the fluctuations in wrist acceleration (steadiness), and electromyography was obtained from the biceps and triceps brachii muscles at loads of 10, 20, and 40% of 1 RM. Tasks were performed before, immediately after, and 24 h after eccentric exercise that resulted in indicators of muscle damage. Maximum voluntary contraction force and 1-RM load declined by approximately 45% immediately after exercise and remained lower at 24 h ( approximately 30% decrease). Eccentric exercise resulted in reduced steadiness and increased biceps and triceps brachii electromyography for all tasks. For the isometric task, steadiness was impaired at the short compared with the long muscle length immediately after exercise (P<0.01). Furthermore, despite no differences before exercise, there was reduced steadiness for the shortening compared with the lengthening contractions after exercise (P=0.01), and steadiness remained impaired for shortening contractions 24 h later (P=0.01). These findings suggest that there are profound effects for the performance of these types of fine motor tasks when recovering from a bout of eccentric exercise.  相似文献   

8.
The purpose of the present study was to determine whether knee extension strength gain in middle-aged and elderly persons is associated with improvement in the limits of stability when leaning his/her body in various directions. The resistance training group (EXT; 4 males, 17 females) completed two bilateral knee extension training sessions, consisting of one set of exercises, per week for 10 weeks. The non-training control group (CONT; 4 males, 3 females) were instructed not to train their legs during the 10-week control period. One set of exercises consisted of 8-12 repetitions of a dynamic resistance exercise until volitional fatigue for knee extension. The initial load for training was set at 70% of the one-repetition maximum (1-RM). The thickness of the rectus femoris (RF) and vastus lateralis (VL) muscles were measured using a B-mode ultrasound apparatus. The postural control measures, obtained using the Balance Master system, included the percentage limits-of-stability (%LOS) and path length (%Path). The 1-RM in EXT was increased significantly by resistance training (p < 0.001). In addition, significant differences were observed between the percentage increase of 1-RM in EXT and those in CONT at wk 5 and at wk 10 of resistance training (p < 0.001). However, no significant increase in muscle thickness of RF or VL was found in EXT. The %LOS to the rear target in EXT was increased significantly by resistance training (p < 0.05-0.01). In addition, the percentage change in %Path was decreased significantly by resistance training (p < 0.001). Therefore, strength gain in quadriceps femoris appears to be associated with improvement in the %LOS and %Path for the rear. In conclusion, strength gain in quadriceps femoris is thought to possibly enable accurate movement of the COG farther from the center target towards the rear, suggesting that strength gain has a positive influence on a person's perception of their ability to avoid falls.  相似文献   

9.
Afferent inputs from Ia fibers in muscle spindles are essential for the control of force and prolonged vibration has been applied to muscle-tendon units to manipulate the synaptic input from Ia afferents onto α-motor neurons. The vastus intermedius (VI) reportedly provides the highest contribution to the low-level knee extension torque among the individual synergists of quadriceps femoris (QF). The purpose of the present study was to examine the effect of prolonged vibration to the VI on force steadiness of the QF. Nine healthy men (25.1 ± 4.3 years) performed submaximal force-matching task of isometric knee extension for 15 s before and after mechanical vibration to the superficial region of VI for 30 min. Target forces were 2.5%, 10%, and 30% of maximal voluntary contraction (MVC), and force steadiness was determined by the coefficient of variation (CV) of force. After the prolonged VI vibration, the CV of force at 2.5%MVC was significantly increased, but CVs at 10% and 30%MVCs were not significantly changed. The present study concluded that application of prolonged vibration to the VI increased force fluctuations of the QF during a very low-level force-matching task.  相似文献   

10.
A steadiness-improving intervention was used to determine the contribution of variability in motor unit discharge rate to the fluctuations in index finger acceleration and manual dexterity in older adults. Ten healthy and sedentary old adults (age 72.9 +/- 5.8 yr; 5 men) participated in the study involving abduction of the left index finger. Single motor unit activity was recorded in the first dorsal interosseus muscle before, after 2 wk of light-load training (10% maximal load), and after 4 wk of heavy-load training (70% maximal load). As expected, the light-load training was effective in reducing the fluctuations in index finger acceleration during slow shortening (0.25 +/- 0.12 to 0.13 +/- 0.08 m/s(2)) and lengthening contractions (0.29 +/- 0.10 to 0.14 +/- 0.06 m/s(2)). Along with the decline in the magnitude of the fluctuations, there was a parallel decrease in the coefficient of variation for discharge rate during both contraction types (33.8 +/- 6.8 to 25.0 +/- 5.9%). The heavy-load training did not further improve either the fluctuations in acceleration or discharge rate variability. Furthermore, the manual dexterity of the left hand improved significantly with training (Purdue pegboard test: 11 +/- 3 to 14 +/- 1 pegs). Bivariate correlations indicated that the reduction in fluctuations in motor output during shortening (r(2) = 0.24) and lengthening (r(2) = 0.14) contractions and improvement in manual dexterity (r(2) = 0.26) was directly associated with a decline in motor unit discharge rate variability. There was a strong association between the fluctuations in motor output and manual dexterity (r(2) = 0.56). These results indicate that practice of a simple finger task was accompanied by a reduction in the discharge rate variability of motor units, a decrease in the fluctuations in motor output of a hand muscle, and an improvement in the manual dexterity of older adults.  相似文献   

11.
The purpose of this study was to investigate whether the isometric muscle force, redeveloped following maximal-effort voluntary shortening contractions in human skeletal muscle, is smaller than the purely isometric muscle force at the corresponding length. Isometric knee extensor moments, surface electromyographic (EMG) signals of quadriceps femoris, and interpolated twitch moments (ITMs) were measured while 10 subjects performed purely isometric knee extensor contractions at a 60 degrees knee angle and isometric knee extensor contractions at a 60 degrees knee angle preceded by maximal-effort voluntary shortening of the quadriceps muscles. It was found that the knee extensor moments were significantly decreased for the isometric-shortening-isometric contractions compared with the isometric contractions for the group as a whole, whereas the corresponding EMG and ITM values were the same. This study is the first to demonstrate force depression following muscle shortening for voluntary contractions. We concluded that force depression following muscle shortening is an actual property of skeletal muscle rather than a stimulation artifact and that force depression during voluntary contraction is not accompanied by systematic changes in muscle activation as evaluated by EMG and ITM.  相似文献   

12.
This study was designed to determine trial-to-trial and day-to-day reproducibility of isometric force and electromyogram activity (EMG) of the knee extensor muscles in water and on dry land as well as to make comparisons between the two training conditions in muscle activity and force production. A group of 20 healthy subjects (12 women and 8 men) were tested three times over 2 weeks. A measurement session consisted of recordings of maximal and submaximal isometric knee extension force with simultaneous recording of surface EMG from the vastus medialis, vastus lateralis and biceps femoris muscles. To ensure identical measurement conditions the same patient elevator chair was used in both the dry and the wet environment. Intraclass correlation coefficients (ICC) and coefficients of variation (CV) showed high trial-to-trial (ICC = 0.95-0.99, CV = 3.5%-11%) and day-to-day reproducibility (ICC=0.85-0.98, CV=11%-19%) for underwater and dry land measurements of force and EMG in each muscle during maximal contractions. The day-to-day reproducibility for submaximal contractions was similar. The interesting finding was that underwater EMG amplitude decreased significantly in each muscle during maximal (P < 0.01-P < 0.001) and submaximal contractions (P < 0.05-P < 0.001). However, the isometric force measurements showed similar values in both wet and dry conditions. The water had no disturbing effect on the electrodes as shown by slightly lowered interelectrode resistance values, the absence of artefacts and low noise levels of the EMG signals. It was concluded that underwater force and EMG measurements are highly reproducible. The significant decrease of underwater EMG could have electromechanical and/or neurophysiological explanations.  相似文献   

13.
To examine fatigue mechanisms in an unselected series of patients with excess fatigue ("effort syndromes") their muscle function was compared with that of normal subjects. Voluntary performance was assessed with a cycle ergometer to exhaustion and by maximal isometric contractions of the quadriceps femoris. The mean maximal heart rate in patients during ergometry was 89% of the predicted rate, and quadriceps strength was either normal or was inappropriate for the available muscle, which suggested submaximal effort. Contractile performance was examined in the absence of volition with stimulated contractions of the adductor pollicis. During stimulated fatiguing activity patients were neither weaker nor more fatigable than controls; thus the excess fatigue experienced by the patients was not due to a defect of the contractile apparatus. The increased perception of effort must therefore be due to impairment of central rather than peripheral mechanisms. The optimal approach to treatment of effort syndromes combines physical and psychological techniques.  相似文献   

14.
IntroductionPopulations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions.MethodsThe study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided.ResultsHypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0–10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant.ConclusionExperimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the knee, it may be important to first manage their pain more effectively.  相似文献   

15.
The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural protein involved in lateral transmission of muscle fiber force. We investigated whether single-nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with various indexes of human skeletal muscle strength and the interindividual variability in the strength responses to resistance training. We determined unilateral knee extension single repetition maximum (1-RM), maximum isometric voluntary contraction (MVC) knee joint torque, and quadriceps femoris muscle specific force (maximum force per unit physiological cross-sectional area) before and after 9 wk of knee extension resistance training in 51 untrained young men. All participants were genotyped for the PTK2 intronic rs7843014 A/C and 3'-untranslated region (UTR) rs7460 A/T SNPs. There were no genotype associations with baseline measures or posttraining changes in 1-RM or MVC. Although the training-induced increase in specific force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 rs7843014 AA and rs7460 TT homozygotes than in the respective rs7843014 C- (P = 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle specific force and PTK2 SNPs suggest that interindividual differences exist in the way force is transmitted from the muscle fibers to the tendon. Therefore, our results demonstrate for the first time the impact of genetic variation on the intrinsic strength of human skeletal muscle.  相似文献   

16.
Strength training counteracts motor performance losses during bed rest.   总被引:4,自引:0,他引:4  
The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups (P < 0.05), with a greater amount (P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr (P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.  相似文献   

17.
Adaptations in coactivation after isometric resistance training.   总被引:5,自引:0,他引:5  
Twenty sedentary male university students were randomly assigned to an experimental or a control group. The experimental group trained the knee extensors of one leg by producing 30 isometric extension maximal voluntary contractions (MVC) per day, three times per week for 8 wk. After 8 wk of training, extensor MVC in the trained leg increased 32.8% (P less than 0.05), but there was no change in vastus lateralis maximal integrated electromyographic activity (IEMGmax). The most important finding was that the degree of hamstring coactivation during extension MVC decreased by approximately 20% (P less than 0.05) after the 1st wk of training. Less pronounced adaptations occurred in the untrained leg: extension MVC force increased 16.2% (P less than 0.05), hamstring coactivity decreased 13% (P less than 0.05) after 2 wk of training, and vastus lateralis IEMGmax was unchanged. The same measures in legs of the control group were not changed during the study. There were no changes in flexion MVC, biceps femoris IEMGmax, or the degree of quadriceps coactivity during flexion MVC in either leg of the control or experimental group. A reduction in hamstring coactivity in the trained and untrained legs indicates that these muscles provide less opposing force to the contracting quadriceps. We conclude that this small but significant decrease in hamstring coactivation that occurs during the early stages of training is a nonhypertrophic adaptation of the neuromuscular system in response to static resistance training of this type.  相似文献   

18.
The generation of muscle-actuated simulations that accurately represent the movement of old adults requires a model that accounts for changes in muscle properties that occur with aging. An objective of this study was to adjust the parameters of Hill-type musculo-tendon models to reflect nominal age-related changes in muscle mechanics that have been reported in the literature. A second objective was to determine whether using the parametric adjustments resulted in simulated dynamic ankle torque behavior similar to that seen in healthy old adults. The primary parameter adjustment involved decreasing maximum isometric muscle forces to account for the loss of muscle mass and specific strength with age. A review of the literature suggested the need for other modest adjustments that account for prolonged muscular deactivation, a reduction in maximum contraction velocity, greater passive muscle stiffness and increased normalized force capacity during lengthening contractions. With age-related changes incorporated, a musculo-tendon model was used to simulate isometric and isokinetic contractions of ankle plantarflexor and dorsiflexor muscles. The model predicted that ankle plantarflexion power output during 120 deg/s shortening contractions would be over 40% lower in old adults compared to healthy young adults. These power losses with age exceed the 30% loss in isometric strength assumed in the model but are comparable to 39-44% reductions in ankle power outputs measured in healthy old adults of approximately 70 years of age. Thus, accounting for age-related changes in muscle properties, other than decreased maximum isometric force, may be particularly important when simulating movements that require substantial power development.  相似文献   

19.
Despite full voluntary effort, neuromuscular activation of the quadriceps femoris muscle appears inhibited during slow concentric and eccentric contractions. Our aim was to compare neuromuscular activation during maximal voluntary concentric and eccentric quadriceps contractions, hypothesizing that inhibition of neuromuscular activation diminishes with resistance training. In 15 men, pretraining electromyographic activity of the quadriceps muscles [vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF)] was 17-36% lower during slow and fast (30 and 240 degrees/s) eccentric and slow concentric contractions compared with fast concentric contractions. After 14 wk of heavy resistance training, neuromuscular inhibition was reduced for VL and VM and was completely removed for RF. Concurrently, electromyographic activity increased 21-52, 22-29, and 16-32% for VL, VM, and RF, respectively. In addition, median power frequency decreased for VL and RF. Eccentric quadriceps strength increased 15-17%, whereas slow and fast concentric strength increased 15 and 8%, respectively. Pre- and posttraining median power frequency did not differ between eccentric and concentric contractions. In conclusion, quadriceps motoneuron activation was lower during maximal voluntary eccentric and slow concentric contractions compared with during fast concentric contraction in untrained subjects, and, after heavy resistance training, this inhibition in neuromuscular activation was reduced.  相似文献   

20.
The purpose of this study was to compare the extent of muscular activation during maximal voluntary knee extension contractions in old and young individuals and to examine the effects of resistance training on muscular activation in each group. The interpolated twitch technique was used to estimate muscular activation during two pre-training baseline tests, and after two and six weeks of resistance training. Throughout the study, the older group was 30% less strong than the young group (p=0.02). The training protocol was effective in both groups with overall isometric strength gains of 30 and 36% in the older (p=0.01) and young (p<0.01) groups, respectively. 10-RM training loads increased by 66% in the old group (p<0.01) and by 77% in the young group (p<0.01) throughout training. At the first baseline test, a 2% difference in muscular activation between groups (p=0.3) did not explain the large disparity in strength. Muscular activation increased by 2% in both groups throughout training (p<0.01). Despite considerably less muscular strength in the older group, muscular activation was greater than 95% of maximum and appears to be equal in both young and older individuals. Both groups demonstrated similar but small increases in muscular activation throughout training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号