首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six steroid derivatives, 1 – 6 , and five butyrolactone derivatives, 7 – 11 , were isolated from the fermentation broth of a gorgonian‐derived Aspergillus sp. fungus. Their structures were elucidated on the basis of NMR and MS spectral data. Compound 1 is a new, highly conjugated steroid. The NMR and MS data of 7 and 8 are reported for the first time, as their structures were listed in SciFinder Scholar with no associated reference. Compounds 1, 4, 5 , and 8 – 11 inhibited the larval settlement of barnacle Balanus amphitrite with EC50 values ranging from 0.63 to 18.4 μg ml?1. Butyrolactone derivatives 7 and 8 showed pronounced antibacterial activities against Staphylococcus aureus with the same MIC values as the positive control ciprofloxacin (MIC 1.56 μM for all three compounds).  相似文献   

2.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

3.
Aim: To determine the antimicrobial activity of costus (Saussurea lappa) oil against Staphylococcus aureus, and to evaluate the influence of subinhibitory concentrations of costus oil on virulence‐related exoprotein production in staph. aureus. Methods and Results: Minimal inhibitory concentrations (MICs) were determined using a broth microdilution method, and the MICs of costus oil against 32 Staph. aureus strains ranged from 0.15 to 0.6 μl ml?1. The MIC50 and MIC90 were 0.3 and 0.6 μl ml?1, respectively. Western blot, haemolytic, tumour necrosis factor (TNF) release and real‐time RT‐PCR assays were performed to evaluate the effects of subinhibitory concentrations of costus oil on virulence‐associated exoprotein production in Staph. aureus. The data presented here show that costus oil dose dependently decreased the production of α‐toxin, toxic shock syndrome toxin 1 (TSST‐1) and enterotoxins A and B in both methicillin‐sensitive Staph. aureus (MSSA) and methicillin‐resistant Staph. aureus (MRSA). Conclusion: Costus oil has potent antimicrobial activity against Staph. aureus, and the production of α‐toxin, TSST‐1 and enterotoxins A and B in Staph. aureus was decreased by costus oil. Significance and Impact of the Study: The data suggest that costus oil may deserve further investigation for its potential therapeutic value in treating Staph. aureus infections. Furthermore, costus oil could be rationally applied in food products as a novel food preservative both to inhibit the growth of Staph. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.  相似文献   

4.
Two new pyran‐2‐ones, nocardiopyrones A and B ( 1 and 2 , resp.), along with four known compounds, pyridinols 3 – 5 , and 1‐acetyl‐β‐carboline ( 6 ) were isolated from the alkalophilic actinomycete Nocardiopsis alkaliphila sp. nov. YIM‐80379. Their structures were established on the basis of spectroscopic analysis, CD spectra, and the quantum‐chemical ECD calculation. Pyridinols 3 – 5 were isolated from a natural source for the first time. Compounds 1 and 2 showed weak antibacterial activities against Pseudomonas aeruginosa, Enterobacter aerogenes, and Escherichia coli with MIC values of 20–48 μM . Compound 2 showed weak antimicrobial activities against Candida albicans and Staphylococcus aureus with MIC values of 24 and 48 μM , respectively.  相似文献   

5.
The twigs and leaves of Blepharispermum hirtum Oliver (Asteraceae) were investigated for their larvicidal and antimicrobial activity. Fractionation of the extracts of the twigs, directed by brine shrimp test and antibacterial activities, led to the isolation of compounds 1 – 4 ; two of which are new ent‐kaurene diterpenoids, blepharispins A and B ( 1 and 2 , resp.). The structures of compounds 1 and 2 were established from spectral data. The absolute configuration at C(15) in 1 was inferred from Mosher ester analysis and relative configurations were suggested by a NOESY experiment. Compound 4 was significantly larvicidal to newly hatched naupleii of Artemia salina L. (BST LC50=1.3 (3.7–0.0) μg/ml), but the blepharispins were not (BST LC50>500 μg/ml). Nevertheless, compound 1 inhibited the growth of Staphylococcus aureus and Bacillus subtilis at a MIC value of 62.5 μg/ml. The significance of the bioactivity results and the presence of ent‐kaurene diterpenoids in B. hirtum are discussed from biosynthetic and local utilization viewpoints.  相似文献   

6.
A new bibenzyl, 2′‐hydroxy‐3,5‐dimethoxy‐4‐methylbibenzyl ( 1 ) and four known compounds identified as 2′‐hydroxy‐3,5‐dimethoxybibenzyl ( 2 ), liquiritigenin ( 3 ), guibourtinidol ( 4 ) and fisetinidol ( 5 ) were isolated from the roots of Bauhinia ungulata L. Phytochemical investigations of the stems of Bungulata led to the isolation of the known compounds identified as liquiritigenin ( 3 ), guibourtinidol ( 4 ), fisetinidol ( 5 ), taraxerol ( 6 ), betulinic acid ( 7 ), taraxerone ( 8 ), glutinol ( 9 ), a mixture of sitosterol ( 10 ) and stigmasterol ( 11 ), pacharin ( 12 ), naringenin ( 13 ) and eriodictyol ( 14 ). The structures of these compounds were elucidated on the basis of their spectral data (IR, MS, 1D‐ and 2D‐NMR). The cytotoxicity of the bibenzyl 1 has been evaluated against four human cancer cell lines, showing the IC50 values of 4.3 and 6.5 μg ml?1 against pro‐myelocytic leukemia (HL‐60) and cervical adenocarcinoma (HEP‐2) cell lines, respectively. This article also registers for the first time the 13C‐NMR data of the known bibenzyl 2 .  相似文献   

7.
The in vitro antibacterial and antifungal activities of the compounds synthesised from some 1,2,3,5-tetrahalogeno benzenes in presence of sodium piperidide and sodium pyrrolidide (2,6-dipiperidino-1,4-dihalogenobenzenes; 2,6-dipyrrolidino-1,4-dibromobenzene; 2,4,6-tripyrrolidino chlorobenzene; and 1,3-dipyrrolidino benzene) were investigated. The in vitro antimicrobial activities were screened against the standard strains: Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633 as Gram positive, Yersinia enterocolitica ATCC 1501, Escherichia coli ATCC 11230 and Klebsiella pneumoniae as Gram negative, and Candida albicans as yeast-like fungus. Compounds (3, 5, 6, 7) inhibited the growth of all the test strains at MIC values of 32–512 μg/ml. None of the four compounds (1, 2, 4, 8) studied showed antimicrobial activity against any of the test strains within the MIC range 0.25–512 μg/ml.  相似文献   

8.
A pharmacokinetic study of oxytetracycline (OTC) following a single (100 mg kg?1) or a multi‐dose (100 mg kg?1 for 5 days) oral administration was carried out in yellow catfish, Pelteobagrus fulvidraco. After oral administration at 25°C, a one‐compartment model was developed. The absorption half‐life (t1/2(ka)) was 3.92, 1.44, 2.75, and 3.34 h in plasma, muscle, liver, and kidney after the single dose, and 0.35, 0.22, 0.42, 0.32 h after the multi‐dose, respectively. The order of peak concentration (Cmax) was liver > kidney > plasma > muscle, at 3.48 μg g?1, 2.90 μg g?1, 1.46 μg ml?1, and 1.39 μg g?1 after the single dose, and 14.02 μg g?1, 8.51 μg g?1, 4.17 μg ml?1, and 3.84 μg g?1 after the multi‐dose, respectively. The elimination half‐lives (t1/2(ke)) of OTC in plasma, muscle, liver, and kidney were calculated to be 7.64, 26.29, 19.08, and 10.61 h after the single dose, and 47.54, 70.99, 49.87, and 47.73 h after the multi‐dose, respectively. The results suggest that OTC was absorbed faster after the multi‐dose than after the single dose, suggesting that OTC could be more efficacious after the multi‐dose and more effective in the control bacterial diseases in aquaculture, with the side effects of longer withdrawal periods.  相似文献   

9.
Aims: In traditional Thai medicine, nutgall of Quercus infectoria G. Olivier is well‐documented as an effective agent for wound and skin infections. The present study was aimed to establish modes of action of the ethanol extract of the plant as well as its main constituents to induce anti‐methicillin‐resistant Staphylococcus aureus (MRSA) activity. Methods and Results: The minimal inhibitory concentration (MIC)/minimal bactericidal concentration (MBC) values of ethyl acetate I, ethyl acetate II, 95% ethanol and 30% ethanol fractions against MRSA were 0·06/0·25, 0·13/0·25, 0·25/0·5 and 0·5/1·00 mg ml?1, respectively. Ellagic acid, gallic acid, syringic acid and tannic acid as major components of Q. infectoria nutgall extract were included in this study. Among these, gallic acid and tannic acid demonstrated good MIC/MBC values at 0·06/0·06 and 0·13/0·25 mg ml?1, respectively. A lysis experiment demonstrated that the ethanol extract, ethyl acetate fraction I and all of the main components failed to lyse MRSA cells. In contrast, both MRSA and Staph. aureus ATCC 25923 treated with the ethanol extract, ethyl acetate fraction I, gallic acid and tannic acid displayed significant loss of tolerance to low osmotic pressure and high salt concentration. Conclusions: The results documented the effect of different fractions of Q. infectoria and purified compounds on MRSA and Staph. aureus. In addition, the study demonstrated that treatment with Q. infectoria extract and the purified compounds results in hypersensitivity to low and high osmotic pressure. Significance and Impact of the Study: This study provides scientific information to support the traditional uses of the nutgall extract and suggesting its anti‐MRSA mechanisms.  相似文献   

10.
Aims: To study the antimicrobial activity of naringin (NAR), a flavonoid extracted from citrus industry waste, and NAR derivatives [naringenin (NGE), prunin and alkyl prunin esters] against pathogenic bacteria such as L. monocytogenes, E. coli O157:H7 and S. aureus. The relationship between the structure of the chemical compounds and their antagonistic effect was also analysed. Methods and Results: The agar dilution technique and direct contact assaying were applied. NGE, prunin and NAR showed no antimicrobial activity at a concentration of 0·25 mmol l?1. Similarly, fatty acids with a chain length between C2 and C18 showed no antimicrobial activity at the same concentration. However, prunin‐6″‐O‐acyl esters presented high antibacterial activity, mainly against Gram‐positive strains. This activity increased with increasing chain length (up to 10–12 carbon atoms). Alkyl prunin esters with 10–12 carbon atoms diminished viability of L. monocytogenes by about 3 log orders and S. aureus by 6 log orders after 2 h of contact at 37°C and at a concentration of 0·25 mmol l?1. The compounds examined were not effective against any of the Gram‐negative strains assayed, even at the highest concentration. Conclusions: Addition of sugars to the aglycone did not enhance its antimicrobial activity. Attachment of a saturated aliphatic chain with 10–12 carbon atoms to the A ring of the flavonoid (or to sugars attached to this ring), seems to be the most promising modification. In conclusion, alkyl prunin esters with a chain length of C10–C12 have promising features as antimicrobial agents because of their high antilisterial and antistaphylococcal activity. Significance and Impact of the Study: This study shows that it is possible to obtain NAR derivatives with important antimicrobial activity, especially against Gram‐positive pathogenic bacteria. It also provides guidelines on the structural modifications in similar molecules to enhance the antimicrobial activity.  相似文献   

11.
Aims: To evaluate the in vitro bactericidal efficacy of lactoferrin (LF), its amidated (AMILF) and pepsin‐digested (PDLF) derivatives, and their combinations, on Escherichia coli O157:H7 and Serratia liquefaciens. Methods and Results: PDLF exhibited the most potent bactericidal efficacy on E. coli O157:H7 (>2·5 log10 CFU ml?1 reduction at concentrations ≥1 mg ml?1), and AMILF on Ser. liquefaciens (1 log10 CFU ml?1 reduction at 0·25–0·50 mg ml?1). Some combinations of LF with PDLF or AMILF showed a slight synergy on E. coli O157:H7 and Ser. liquefaciens. However, all combinations of AMILF with PDLF were less active than the sum of the individual effects of the two antimicrobials. Production of capsular polysaccharide by bacteria might be involved in antimicrobial resistance. Conclusions: Escherichia coli O157:H7 and Ser. liquefaciens showed marked differences in the sensitivity to LF and its derivatives. E. coli O157:H7 was strongly inhibited by PDLF, whereas the effect of LF and its derivatives on Ser. liquefaciens was weak to negligible. Significance and Impact of the Study: PDLF was the most promising of the tested antimicrobials on E. coli O157:H7. However, the resistance of Ser. liquefaciens to LF and its derivatives hinders their use in the food industry.  相似文献   

12.
Two series of carbazole analogs of 8‐methoxy‐N‐substituted‐9H‐carbazole‐3‐carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 μg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 μg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 μg/mL) and S. aureus (MIC: 1.56 μg/mL), respectively.  相似文献   

13.
The new methylated grindelane diterpenoid, 7β ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 1b ), together with the known 7α ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 2a ), 6‐oxogrindelic acid ( 3a ), 4β ‐hydroxy‐6‐oxo‐19‐norgrindelic ( 4a ), 19‐hydroxygrindelic acid ( 5a ), 18‐hydroxygrindelic acid ( 6a ), 4α ‐carboxygrindelic acid ( 7a ), 17‐hydroxygrindelic acid ( 8a ), 6α ‐hydroxygrindelic acid ( 9a ), 8,17‐bisnor‐8‐oxagrindelic acid ( 10a ), 7α ,8α ‐epoxygrindelic acid ( 11a ), and strictanonic acid ( 12a ) as methyl esters were obtained from an Argentine collection of Grindelia chiloensis (Cornel .) Cabrera . Their structures and relative configurations were established on the basis of spectroscopic analysis. CHC l3 extract from the aerial parts and their pure compounds were evaluated for their antifungal and depigmenting effects. Methyl ester derivative of 10a ( 10b ) exhibited a remarkable mycelial growth inhibition against Botritis cinerea with an IC 50 of 13.5 μg ml?1. While the new grindelane 1b exerted a clear color reduction of the yellow‐orange pigment developed by Fusarium oxysporum against UV ‐induced damage.  相似文献   

14.
Novel series of 3-substituted 2,6-difluorobenzamide derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their in vitro antibacterial activity against various phenotype of Gram-positive and Gram-negative bacteria, and their cell division inhibitory activity against three representative strains. As a result, 3-chloroalkoxy derivative 7, 3-bromoalkoxy derivative 12 and 3-alkyloxy derivative 17 were found to exhibit the best antibacterial activity against Bacillus subtilis with MICs of 0.25–1 μg/mL, and good activity (MIC < 10 μg/mL) against both susceptible and resistant Staphylococcus aureus. Additionally, all the three compounds displayed potent cell division inhibitory activity with MIC values of below 1 μg/mL against Bacillus subtilis and Staphylococcus aureus.  相似文献   

15.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

16.
A new polychlorinated triphenyl diether named microsphaerol ( 1 ), has been isolated from the endophtic fungus Microsphaeropsis sp. An intensive phytochemical investigation of the endophytic fungus Seimatosporium sp., led to the isolation of a new naphthalene derivative named seimatorone ( 2 ) and eight known compounds, i.e., 1‐(2,6‐dihydroxyphenyl)‐3‐hydroxybutan‐1‐one ( 3 ), 1‐(2,6‐dihydroxyphenyl)butan‐1‐one ( 4 ), 1‐(2‐hydroxy‐6‐methoxyphenyl)butan‐1‐one ( 5 ), 5‐hydroxy‐2‐methyl‐4H‐chromen‐4‐one ( 6 ), 2,3‐dihydro‐5‐hydroxy‐2‐methyl‐4H‐chromen‐4‐one ( 7 ), 8‐methoxynaphthalen‐1‐ol ( 8 ), nodulisporins A and B ( 9 and 10 , resp.), and daldinol ( 11 ). The structures of 1 and 2 were elucidated by detailed spectroscopic analysis including 1H‐ and 13C‐NMR, COSY, HMQC, HMBC, and HR‐EI‐MS, while the structures of the known compounds were deduced from comparison of their spectral data with those in the literature. Preliminary studies revealed that microsphaerol ( 1 ) showed good antibacterial activities against B. Megaterium and E. coli, and good antilagal and antifungal activities against C. fusca, M. violaceum, respectively. On the other hand, seimatorone ( 2 ) exhibited moderate antibacterial, antialgal, and antifungal activities.  相似文献   

17.
A new type of nitrogen and chloride co-doped carbon dots (N/Cl-CDs) based on choline chloride–urea–glycine ternary deep eutectic solvents (DESs) was synthesized using a one-step hydrothermal method. The prepared N/Cl-CDs exhibited oxidase-like activity and excellent antibacterial activity against Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). The addition of silver nanoparticles (Ag NPs) (i.e. N/Cl-CDs + Ag NPs) to the N/Cl-CDs also significantly enhanced the oxidase and antibacterial activities. The nanocomposite (1·8 mg ml−1) completely inactivated 105 CFU per ml of MRSA in 90 min. E. coli and S. aureus were labelled with the N/Cl-CDs, enabling multicolour fluorescence imaging at different excitation wavelengths. The nanocomposites have high antibacterial efficiency as a new bactericidal agent, as well as application potential with good biocompatibility and low toxicity.  相似文献   

18.
The volatile fractions isolated from Prangos peucedanifolia Fenzl leaves and flowers were investigated for their phytochemical composition and biological properties. Flower and leaf hydrodistillation afforded 3.14 and 0.49 g of yellowish oils in 1.25 and 0.41% yields, respectively, from dry vegetable materials. According to the GC‐FID and GC/MS analyses, 36 (99.35% of the total oil composition) and 26 compounds (89.12%) were identified in the two oils, respectively. The major constituents in the flower volatile fraction were β‐pinene (35.58%), α‐pinene (22.13%), and β‐phellandrene (12.54%), while m‐cresol (50.38%) was the main constituent of the leaf volatile fraction. The antimicrobial activity was evaluated against several bacterial and fungal strains, on the basis of the minimum inhibitory concentration (MIC) by the micro‐ and macrodilution methods. The two volatile fractions showed moderate antifungal and antibacterial activities, especially against Trichophyton rubrum (MIC of 2×103 μg/ml), Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus aureus (MIC≤1.9×103 μg/ml for all).  相似文献   

19.
Lichens are complex symbiotic organisms able to produce a vast array of compounds. The Algerian lichen diversity has only prompted little interest even given the 1085 species listed. Herein, the chemodiversity of four Algerian lichens including Cladonia rangiformis, Ramalina farinaceae, Rfastigiata, and Roccella phycopsis was investigated. A dereplication strategy, using ultra high performance liquid chromatography‐high resolution‐electrospray ionization‐mass spectrometry (UHPLC‐HRMS/MS), was carried out for a comprehensive characterization of their substances including phenolics, depsides, depsidones, depsones, dibenzofurans, and aliphatic acids. Some known compounds were identified for the first time in some species. Additionally, the lichenic extracts were evaluated for their antifungal and antimicrobial activities on human pathogenic strains (Candida albicans, Cglabrata, Aspergillus fumigatus, Staphylococcus aureus, and Escherichia coli). Cyclohexane extracts were found particularly active against human pathogenic fungi with MIC80 values ranging from 8 to 62.5 μg/mL, without cytotoxicity. This study highlights the therapeutic and prophylactic potential of lichenic extracts as antibacterial and antifungal agents.  相似文献   

20.
The in vitro inhibitory potential of 50 extracts from various species of the flowering plant genus Hypericum was investigated using the Kirby? Bauer disk diffusion susceptibility test against Paenibacillus larvae, a spore‐forming, Gram‐positive bacterial pathogen that causes American foulbrood (AFB), a lethal disease affecting honeybee brood worldwide. Of the tested extracts, 14 were identified as highly active against P. larvae as compared to the activity of the positive control, indicating the presence of highly potent antibacterial compounds in the extracts. Examination of these extracts using TLC and HPLC/MS analyses revealed the presence of acylphloroglucinol and filicinic‐acid derivatives. Six pure compounds isolated from these extracts, viz., hyperforin ( 1 ), uliginosin B ( 2 ), uliginosin A ( 3 ), 7‐epiclusianone ( 4 ), albaspidin AA ( 5 ), and drummondin E ( 6 ), displayed strong antibacterial activity against the vegetative form of P. larvae (MIC ranging from 0.168–220 μM ). Incubation of P. larvae spores with the lipophilic extract of Hypericum perforatum and its main acylphloroglucinol constituent 1 led to the observation of significantly fewer colony forming units as compared to the negative control, indicating that the acylphloroglucinol scaffold represents an interesting lead structure for the development of new AFB control agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号