首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatiles produced by mycelia of mushrooms with aromatic odour were investigated for their antifungal activity against plant‐pathogenic fungi. The results of the screening of 23 species of basidiomycetes revealed that volatile substances from mycelia of Mycoleptodonoides aitchisonii (TUFC10099), an edible mushroom, strongly inhibited the mycelial growth, spore germination and lesion formation on host leaves of some plant‐pathogenic fungi including Alternaria alternata, A. brassicicola, A. brassicae, Colletotrichum orbiculare and Corynespora cassiicola. The volatile compounds were isolated from the culture filtrate of M. aitchisonii, and 1‐phenyl‐3‐pentanone was identified as a major antifungal volatile. The compound had significantly inhibitory activity against plant‐pathogenic fungi at 35 ppm. This is the first report that the volatile compound produced by mycelia of M. aitchisonii has antifungal activity against plant‐pathogenic fungi.  相似文献   

2.
The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography‐flame‐ionization detection (GC‐FID) analysis. The compounds (–)‐5‐methylmellein and (–)‐(3R)‐8‐hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (–)‐5‐Methylmellein showed weak activity against Phomopsis obscurans, Pviticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (–)‐(3R)‐8‐Hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin appeared slightly more active in the microtiter environment than 5‐methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.  相似文献   

3.
Aims: To investigate the effect of seven wine phenolic compounds and six oenological phenolic extracts on the growth of pathogenic bacteria associated with respiratory diseases (Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, Enterococcus faecalis, Streptococcus sp Group F, Streptococcus agalactiae and Streptococcus pneumoniae). Methods and Results: Antimicrobial activity was determined using a microdilution method and quantified as IC50. Mor. catarrhalis was the most susceptible specie to phenolic compounds and extracts. Gallic acid and ethyl gallate were the compounds that showed the greatest antimicrobial activity. Regarding phenolic extracts, GSE (grape seed extract) and GSE‐O (oligomeric‐rich fraction from GSE) were the ones that displayed the strongest antimicrobial effects. Conclusions: Results highlight the antimicrobial properties of wine phenolic compounds and oenological extracts against potential respiratory pathogens. The antimicrobial activity of wine phenolic compounds was influenced by the type of phenolic compounds. Gram‐negative bacteria were more susceptible than Gram‐positive bacteria to the action of phenolic compounds and extracts; however, the effect was species‐dependent. Significance and Impact of Study: The ability to inhibit the growth of respiratory pathogenic bacteria as shown by several wine phenolic compounds and oenological extracts warrants further investigations to explore the use of grape and wine preparations in oral hygiene.  相似文献   

4.
The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC‐FID and GC/MS. Intra‐species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 – 98.5% with yields varied of 0.09 – 0.36% and the main compounds were zingiberenol 1 (8.7 – 29.8%), eremoligenol (4.2 – 12.5%), β‐curcumene (2.1 – 12.5%), zingiberenol 2 (4.6 – 19.8%) and (E,Z)‐farnesol (3.5 – 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2‐diphenyl‐1‐picrylhydrazyl, Ferric‐Reducing Antioxidant Power Assay and β‐carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by Pexpansum.  相似文献   

5.
Acacia catechu, commonly known as catechu, cachou and black cutch is an important medicinal plant and an economically important forest tree. The methanolic extract of this plant was found to have antimicrobial activities against six species of pathogenic and non-pathogenic microorganisms: Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The maximum zone of inhibition (20 mm) was found to be exhibited against S. aureus. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 1,000 μg/ml. The extract was found to be equally effective against gram positive and gram negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification. The chemical constituents of organic plant extracts were separated by thin layer chromatography (TLC) and the plant extracts were purified by column chromatography and were further identified by Gas chromatography–mass selection (GC–MS) analysis. The composition of A. catechu extract had shown major components of terpene i.e. camphor (76.40%) and phytol (27.56%) along with other terpenes in minor amounts which are related with their high antibacterial and antifungal properties.  相似文献   

6.
With the aim to find new compounds with high antifungal activity, 21 4‐amino‐5‐substituted‐1,2,4‐triazole Schiff bases ( 2a  –  2g , 3a  –  3g , and 4a  –  4g ) were designed and synthesized. Their antifungal activities against Pythium solani, Gibberlla nicotiancola, Fusarium oxysporium f. sp. niveum, Gibberlla saubinetii, Alternaria iycopersici, Phytophthora capsici, Physalospora piricola, Cercospora arachidicola hori, and Fusarium oxysporium f. sp. cucumber were tested, parts of the compounds exhibited excellent antifungal activity. This research provides useful information for further study of antifungal agents.  相似文献   

7.
The chemical composition of the essential oils isolated from the aerial parts of Micromeria inodora (Desf .) Benth . collected in 24 Algerian localities was investigated from the first time using GC‐FID, GC/MS and 13C‐NMR. Altogether, 83 components which accounted for 94.7% of the total oil composition were identified. The main compounds were trans‐sesquisabinene hydrate ( 1 ; 20.9%), α‐terpinyl acetate ( 2 ; 19.8%), globulol ( 3 ; 4.9%), caryophyllene oxide ( 4 ; 4.3%), β‐bisabolol ( 5 ; 2.9%) and trans‐7‐epi‐sesquisabinene hydrate ( 6 ; 2.6%). Comparison with the literature highlighted the originality of the Algerian Minodora oil and indicated that 1 might be used as taxonomical marker. The study of the chemical variability allowed the discrimination of two main clusters confirming that there is a relation between the essential‐oil compositions and the soil nature of the harvest locations. Biological activity of Minodora essential oil was assessed against fourteen species of microorganisms involved in nosocomial infections using paper disc diffusion and dilution agar assays. The in vitro study demonstrated a good activity against Gram‐positive strains such as Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, and Enterococcus faecalis, and moderate activity against Candida albicans. These results might be useful for the future commercial valorization of Minodora essential oil as a promising source of natural products with potential against various nosocomial community and toxinic infections.  相似文献   

8.
Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2‐methylpropanoic acid 2,2‐dimethyl‐1‐(2‐hydroxy‐1‐methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.  相似文献   

9.
Aims: This study is aiming at characterizing antifungal substances from the methanol extract of Prunella vulgaris and at investigating those substances’ antifungal and antioomycete activities against various plant pathogens. Methods and Results: Two polyacetylenic acids were isolated from P. vulgaris as active principles and identified as octadeca‐9,11,13‐triynoic acid and trans‐octadec‐13‐ene‐9,11‐diynoic acid. These two compounds inhibited the growth of Magnaporthe oryzae, Rhizoctonia solani, Phytophthora infestans, Sclerotinia sclerotiorum, Fusarium oxysporum f. sp. raphani, and Phytophthora capsici. In addition, these two compounds and the wettable powder‐type formulation of an n‐hexane fraction of P. vulgaris significantly suppressed the development of rice blast, tomato late blight, wheat leaf rust, and red pepper anthracnose. Conclusions: These data show that the extract of P. vulgaris and two polyacetylenic acids possess antifungal and antioomycete activities against a broad spectrum of tested plant pathogens. Significance and Impact of the Study: This is the first report on the occurrence of octadeca‐9,11,13‐triynoic acid and trans‐octadec‐13‐ene‐9,11‐diynoic acid in P. vulgaris and their efficacy against plant diseases. The crude extract containing the two polyacetylenic acids can be used as a natural fungicide for the control of various plant diseases.  相似文献   

10.
The widespread use of Deverra scoparia Coss. & Durieu in Algerian folk‐medicine as a remedy can be relatively attributed to its total phenolic compounds. The current study aimed to provide a scientific basis for optimal collection and usage of Deverra scoparia Coss. & Durieu plant. Hence, 37 samples were gathered from nine sites in Algeria during two seasons 2016 and 2017, then exposed to a green extraction. Total phenolic (TPC), flavonoid (FC) and condensed tannins (CTC) content were estimated spectrophotometrically. The antioxidant activity was measured using five different methods, DPPH., ABTS.+, FRAP, CUPRAC and Fe2+‐chelating. The results have revealed considerable amounts of TPC varied from 804 to 1544 mg GAE/100 g dry matter, FC started from 187 up to 410 mg QE/100 g dry matter and CTC varied from 111 to 394 mg CE/100 g dry matter. The best IC50 values (μg/mL) of DPPH., ABTS?+, FRAP, CUPRAC and Fe2+‐chelating tests were 56.62, 5.41, 21.26, 52.93 and 78.10, respectively. Moreover, high correlations were found between CTC and most of the antioxidant tests. Hence, CTC are suggested to be the principal group of antioxidant activity in Deverra scoparia Coss. & Durieu extracts.  相似文献   

11.
The ethanolic and aqueous extracts from in vitro shoots of Quillaja saponaria Mol. (Quillay) were studied for their antifungal activity against the phytopathogenic fungus Botrytis cinerea Pers. These extracts reduced conidial germination and mycelial growth of B. cinerea, ethanolic extracts being more active than aqueous extracts. In addition, the damage areas produced by this fungus on tomato leaves and strawberry fruits pre-treated with quillay extracts were diminished. The fungitoxic effect of in vitro-grown quillay extract was similar to those obtained with commercial fungicides of both natural (BC-1000) and synthetic (iprodione–dicarboximide) origin. On the other hand, the antifungal action of quillay extracts obtained from adult trees naturally grown was only slightly superior to the fungitoxic activity of the extract from in vitro plants. HPLC analysis of the extract showed that it contained saponins and some phenolic compounds such as chlorogenic, caffeic, vanillic, and salicylic acids, and scopoletin, which have been identified as antifungal agents on phytopathogenic fungi. The results obtained in this work, suggests that extracts of in vitro-grown quillay have an important protective effect against B. cinerea and support the use of an in vitro culture system as a biotechnological alternative to obtain environmental safe antifungal quillay extracts to control B. cinerea, contributing to the preservation of this indigenous Chilean species.  相似文献   

12.
The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC‐FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 – 96.83% of the total oil according to species, were identified. The main compounds were 1,8‐cineole, α‐pinene, p‐cymene, γ‐gurjunene, α‐aromadendrene, and β‐phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 – 98.91% of the total oil were identified. α‐Pinene, 1,8‐cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC50 = 3.83 mg/ml) and M. communis oil from Zaghouan (IC50 = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p‐cymene, carvacrol, cuminaldehyde, and linalool.  相似文献   

13.
The aim of this study was to investigate the essential oil (EO) compositions and antioxidant activities from petals of three wild tree peony species (Paeonia delavayi, Plutea, and Prockii) and eleven Psuffruticosa cultivars from different cultivar groups. The EOs yields varied from 0.63% to 1.25% (v/v) among samples when using supercritical CO2 extraction. One hundred and sixty‐three components were detected by GC/MS; and among them, linalool oxide, (Z)‐5‐dodecen‐1‐yl acetate, nonadecane, (Z)‐5‐nonadecene, heneicosane, phytol, and linoleic acid ethyl ester were dominant. According to hierarchical cluster analysis, principal component analysis and correspondence analysis, Plutea, Pdelavayi, and ‘High Noon’ were clustered in a group described as having a refreshing herbal‐like note due to high rates of phytol and linalool oxide. Notably, Plutea and Pdelavayi also had strong DPPH and ABTS radical scavenging activities. These results suggest that Plutea and Pdelavayi are the most promising candidates as useful sources of fragrances and natural antioxidants.  相似文献   

14.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

15.
The insecticidal activity and chemical constituents of the essential oil from Ajania fruticulosa were investigated. Twelve constituents representing 91.0% of the essential oil were identified, and the main constituents were 1,8‐cineole ( 41.40% ), (+)‐camphor ( 32.10% ), and myrtenol (8.15%). The essential oil exhibited contact toxicity against Tribolium castaneum and Liposcelis bostrychophila adults with LD50 values of 105.67 μg/adult and 89.85 μg/cm2, respectively. The essential oil also showed fumigant toxicity against two species of insect with LC50 values of 11.52 and 0.65 mg/l, respectively. 1,8‐Cineole exhibited excellent fumigant toxicity (LC50 = 5.47 mg/l) against Tcastaneum. (+)‐Camphor showed obvious fumigant toxicity (LC50 = 0.43 mg/l) against Lbostrychophila. Myrtenol showed contact toxicity (LD50 = 29.40 μg/cm2) and fumigant toxicity (LC50 = 0.50 mg/l) against Lbostrychophila. 1,8‐Cineole and (+)‐camphor showed strong insecticidal activity to some important insects, and they are main constituents of Afruticulosa essential oil. The two compounds may be related to insecticidal activity of Afruticulosa essential oil against Tcastaneum and Lbostrychophila.  相似文献   

16.
The essential oil compositions of the leaves of three related Myrtaceae species, namely Syzygium aqueum, Syzygium samarangense and Eugenia uniflora, were investigated using GLC/MS and GLC/FID. Altogether, 125 compounds were identified: α‐Selinene (13.85%), β‐caryophyllene (12.72%) and β‐selinene constitute the most abundant constituents in Saqueum. Germacrene D (21.62%) represents the major compound in Ssamarangense whereas in Euniflora, spathulenol (15.80%) represents the predominant component. Multivariate chemometric analyses were used to discriminate the essential oils using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the chromatographic results. The antimicrobial activity of the popularly used Euniflora essential oil was assessed using broth microdilution method against six Gram‐positive, three Gram‐negative bacteria and two fungi. The oil showed moderate antimicrobial activity against Bacillus licheniformis exhibiting MIC and MMC of 0.63 mg/ml. The cytotoxic activity of Euniflora essential oil was investigated against Trypanosoma brucei brucei (Tbbrucei) and MCF‐7 cancer cell line using MTT assay. It showed moderate activity against MCF‐7 cells with an IC50 value of 76.40 μg/ml. On the other hand, Tbrucei was highly susceptible to Euniflora essential oil with IC50 of 11.20 μg/ml, and a selectivity index of 6.82.  相似文献   

17.
To identify Fusarium species associated with diseases of root and basal plate of onion, surveys were conducted in seven provinces of Turkey in 2007. Samplings were performed in 223 fields, and 332 isolates belonging to 7 Fusarium spp. were obtained. The isolates were identified as Foxysporum, Fsolani, Facuminatum, Fequiseti, Fproliferatum, Fredolens, and Fculmorum based on morphological and cultural characteristics. Also, species‐specific primers were used to confirm the identity of Fusarium species. Foxysporum was the most commonly isolated species, comprising 66.57% of the total Fusarium species. Fredolens was identified for the first time in onion‐growing areas of Turkey. Selected isolates of each species were evaluated for their aggressiveness on onion plant. Foxysporum, Fsolani, Facuminatum, Fproliferatum, and Fredolens were highly pathogenic, causing severe damping‐off on onion plants cv. Texas Early Grano. Inter‐simple sequence repeats (ISSR) markers revealed a high degree of intra‐ and interspecific polymorphisms among Fusarium spp.  相似文献   

18.
Acetone extracts of the threelichen species Evernia prunastri, Hypogymnia physodes and Cladoniaportentosa were investigated for activityagainst eight plant pathogenic fungi: Pythium ultimum, Phytophthorainfestans, Rhizoctonia solani, Botrytis cinerea, Colletotrichumlindemuthianum, Fusarium solani, Stagonospora nodorum and Ustilagomaydis. Particularly, E. prunastriand H. physodes exhibit total or stronginhibition on P. ultimum, U.maydis and P. infestans growth. Incontrast, Cladonia extracts were lessactive to reduce growth of these fungi.Lichenic acids were also examined forantifungal activity. P. infestans growthwas severely inhibited by evernic acid. P.ultimum and P. infestans growth wereslightly but significantly inhibited by evernicacid and (–) usnic acid, respectively. Growthinhibition of U. maydis was also observedfor the latter lichenic acid. These resultsconfirm the previously observed activities oflichen extracts. This suggests that secondarylichen metabolites might be of potential use asantifungal agents.  相似文献   

19.
The lipophilic extracts of two marine aeolid nudibranch molluscs of the genus Spurilla collected in distinct geographical areas have been chemically analyzed. The Et2O extracts of the nudibranchs were dominated by the presence of usual fatty acids and sterols and contained terpenoid compounds 1  –  3 as minor metabolites. Spurillin A ( 1 ) and spurillin B ( 3 ) were new molecules whereas cisγ‐monocyclofarnesol ( 2 ) was already reported in the literature as a synthesis product. Interestingly, bursatellin ( 4 ), previously isolated from anaspidean molluscs of the genus Bursatella, was found in the butanol extract of both Spurilla species. Compounds 1  –  4 were not detected in the extracts of the sea‐anemone preys collected together with the molluscs.  相似文献   

20.
Thymus capitatus and Tetraclinis articulata essential oils as well their major components (carvacrol and α‐pinene) were evaluated for their antifungal and insecticidal activities. Both oils showed good in vitro antifungal activity against Fusarium oxysporum, Aspergillus niger, Penicillium sp., Alternaria alternata, and Botrytis cinerea, the fungi causing tomato rot. In vivo results indicate the efficacies of both essential oils and carvacrol of reduce postharvest fungal pathogens, such as Bcinerea and Alalternata that are responsible of black and gray rot of tomato fruit. Disease incidence of Alalternata and Bcinerea decreased on average from 55% to 80% with essential oil of Thcapitatus and pure carcvacrol, while Tearticulata essential oil exhibited inhibition of fungal growth of 55% and 25% against Alalternata and Bcinerea, respectively, with concentration of 0.4 μl/l air. The insecticidal activity of Thcapitatus and Tearticulata essential oils exhibited also a good insecticidal activity. At the concentration of 0.2 μl/ml air, the oils caused mortality over 80% for all larval stages of Tuta absoluta and 100% mortality for the first‐instar after 1.5 h only of exposure. α‐Pinene presented lower insecticidal and antifungal activities compared to essential oils of Thcapitatus, Tearticulata and pure carvacrol. Thus, these essential oils can be used as a potential source to develop control agents to manage some of the main pests and fungal diseases of tomato crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号