首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

2.
3.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

4.
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy‐sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ‐like proteins, plants also encode a hybrid βγ protein that combines the Four‐Cystathionine β‐synthase (CBS)‐domain (FCD) structure in γ subunits with a glycogen‐binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in‐depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast‐containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre‐CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.  相似文献   

5.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

6.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

7.
8.
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change.  相似文献   

9.
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β‐catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage‐stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA‐injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8‐KDEL) could dorsalize Xenopus embryos. Finally, Wnt8‐induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.  相似文献   

10.
Late Pleistocene European cave bears (Ursus spelaeus ) have been considered to be largely vegetarian, although stable isotope data (δ13C and δ15N values) from the Romanian Carpathians has suggested considerable dietary variation. Here we evaluate previous and additional adult cave bear isotopic data from four Marine Isotope Stage 3 (MIS 3) sites in the Carpathians. Pe?tera Ur?ilor (=  35), Pe?tera Cioclovina (=  32), Pe?tera Muierilor (=  8), and Pe?tera cu Oase (=  72) provide both a dichotomy between samples suggesting vegetarian diets (from Cioclovina and Muierilor) and more omnivorous diets (from Ur?ilor and Oase), and considerable isotopic variation within samples from each site. While an inference of a strictly vegetarian diet may apply to groups that lived in ecosystems which restricted the available animal protein for these large ursids, the within and between sample isotopic variation among the Carpathian cave bears indicates considerable flexibility in their sources of protein and hence in their dietary regimes. In addition, developmental assessment of Cioclovina isotopic profiles (neonates, juveniles, sub‐adults and adults) provides patterns of transfer of stable isotope signatures throughout immature life for both δ13C and δ15N (increase and decrease, respectively), whereas those from Ur?ilor show little developmental shift.  相似文献   

11.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

12.
13.
Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4‐hydroxy‐5‐methylcoumarin (HMC). Unlike most coumarins, 5‐methylcoumarins have been suggested to be derived through the acetate‐malonate pathway. All of these polyketide‐derived glucosylated molecules are considered to have a role in defense against herbivores and phytopathogens in gerbera. Gerbera expresses three genes encoding 2‐pyrone synthases (G2PS1–3). The enzymes are chalcone synthase‐like polyketide synthases with altered starter substrate specificity. We have shown previously that G2PS1 is responsible for the synthesis of 4‐hydroxy‐6‐methyl‐2‐pyrone (triacetolactone), a putative precursor of gerberin and parasorboside. Here we show that polyketide synthases G2PS2 and G2PS3 are necessary for the biosynthesis of HMC in gerbera, and that a reductase enzyme is likely required to complete the pathway to HMC. G2PS2 is expressed in the leaf blade and inflorescences of gerbera, while G2PS3 is strictly root specific. Heterologous expression of G2PS2 or G2PS3 in tobacco leads to the formation of 4,7‐dihydroxy‐5‐methylcoumarin, apparently an unreduced precursor of HMC, while ectopic expression in gerbera leads to HMC formation in tissues where nontransgenic tissue does not express the genes and does not accumulate the compound. Using protein modelling and site‐directed mutagenesis we identified the residues I203 and T344 in G2PS2 and G2PS3 to be critical for pentaketide synthase activity.  相似文献   

14.
15.
16.
17.
18.
Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in β‐catenin (CTNNB1). We have compared the dynamics and the potency of β‐catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β‐catenin took much longer to achieve Wnt deregulation and acquire a crypt‐progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β‐catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β‐catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E‐cadherin and a higher number of E‐cadherin:β‐catenin complexes at the membrane. Reduction in E‐cadherin synergised with an activating mutation of β‐catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of β‐catenin that is required to drive transformation, and E‐cadherin can act as a buffer to sequester mutated β‐catenin.  相似文献   

19.
The life histories of ammonites and the life strategies they employed are difficult to assess without robust modern analogues but placing constraints on ammonite growth rates provides a fundamental first step to understanding this abundant, but poorly understood, fossil group. Here we interpret periodic variations in carbon and oxygen stable isotope profiles from Campanian and Maastrichtian ammonites (Baculites) as seasonally driven and use these records to determine their rate of shell precipitation. Several of these samples are housed in museums and were originally prepared using sealants for display and preservation but testing of these sealants indicated no alteration of the isotopic values of treated carbonate. Diagenetic alteration, as determined by shell microstructure, affected the preservation of isotopic signals, resulting in the loss of seasonal variation in less well‐preserved specimens, and the δ13C signal is more robust than δ18O. The periodicity of isotopic profiles from Baculites shells presented here suggest that these organisms grew at rapid rates (c. 340 mm per year), which may imply an r‐type life strategy in which the animals reach maturity quickly, spawn large quantities of progeny, and die at a young age. Because of the potential mobility of Baculites, reconstructing palaeoenvironmental conditions from these isotopic records is challenging and should be conducted cautiously. Unfortunately, well‐preserved Baculites shells much longer than 350 mm are rarely recovered, which complicates the statistical treatment of potential periodicity in isotopic profiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号