首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
CO2 fixation in acetogenic bacteria: Variations on a theme   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
CO2 reduction to acetate in anaerobic bacteria   总被引:1,自引:0,他引:1  
Abstract The reduction of 2 CO2 to acetate is catalyzed in the energy metabolism of homoacetogenic bacteria, which couple acetate formation to the synthesis of ATP. The carboxyl group of acetate is formed from CO2 via reduction to a bound carbonyl ([CO]), a redution that requires the input of methaolic energy when hydrogen is used as the electron donor. The methyl group of acetate is formed via formate and tetrahydrofolate bound C1 intermediates including methyl tetrahydrofolate as the intermediates. The methyl group is the 'condensed' with the carbonyl and CoA to acetyl-CoA, which is converted to acetate in the energy metabolism or to cell carbon in the anabolism of the bacteria. The mechanism of ATP synthesis coupled to CO2 reduction to acetate is still unclear. The only reaction sufficiently exergonic is the reduction of methylene tetrahydrofolate to methyl tetrahydrofolate. Indirect evidence was presented that this reaction in homoacetogens might be coupled to the electrogenic transport of sodium across the cytoplasmic membrane. The sodium gradient formed via methylene-THF reduction could be transformed into a proton gradient via a sodium/proton antiporter. ATP would then be synthesized by a proton translocating ATP synthase.  相似文献   

8.
Abstract: Dopamine receptors belong to the seven transmembrane helix-containing, G protein-coupled receptor superfamily. Mutagenesis studies suggest that dopamine and its analogues interact with aspartate-114 in helix 3 and two helix 5 serines (194 and 197) of the D2 receptor. In addition to these amino acids, hydrophobic residues within the receptor core may be important not only for binding but also for receptor activation. Described is a site-directed mutagenesis investigation into the roles of these hydrophobic residues in the long isoform of the human D2 receptor. Replacement of helix 6 phenylalanines (389 or 390) with alanines resulted in disrupted binding to several agonists and antagonists and impaired inhibition of adenylyl cyclase activity. Replacement of the helix 5 phenylalanine-198 with an alanine selectively disrupted [3H]N-0437 binding, whereas the affinities for other agonists and antagonists remained unchanged. This mutant remained functionally intact when stimulated with dopamine or bromocriptine. Replacement of the helix 7 phenylalanine-411 or the helix 6 leucine-387 with alanines produced receptors that bound agonists well but were unable to inhibit adenylyl cyclase. Based on these data, two conserved helix 6 phenylalanines (389 and 390) appear to be crucial for ligand binding, and phenylalanine-411 in helix 7 and leucine-387 in helix 6 may be important for propagating conformational changes from the agonist binding site(s) to G protein coupling domain(s) of the D2 receptor.  相似文献   

9.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

10.
N2 fixation by Acacia species increases under elevated atmospheric CO2   总被引:1,自引:0,他引:1  
In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi‐arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south‐eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole‐plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass.  相似文献   

11.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

12.
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species.  相似文献   

13.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:7,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

14.
CO2 and H2O vapor exchange were measured by enclosing citrus (Citrus sinensis cv. Sour Orange) leaves in a temperature controlled transparent leaf chamber. Introduction of dry air into the closed circuit gas flow caused cyclic oscillation in CO2 and H2O vapor exchange. It is suggested that oscillation in the CO2 exchange at the CO2 compensation concentration is due to oscillation in non-stomatal resistance to CO2. Three types of oscillation were observed: 3–6 min (peak to peak) in young leaves, 30 min in mature leaves, and 160 min in old leaves.  相似文献   

15.
16.
Abstract The experimental determination of cytoplasmic and vacuolar pH values is discussed. Despite variation in these values evidence indicates that intracellular pH values are normally regulated within narrow limits. The regulatory mechanisms proposed involve the metabolic consumption of OH& and the active efflux of H +. The evidence for intracellular pH modification in response to CO2 hydration and the production of HCO?3 and H+ is examined. Theoretical calculations and experimental data indicate that CO2 concentrations as high as 5% will lower intracellular pH. Conversely, variation in CO2 levels around atmospheric concentrations is unlikely to perturb intracellular pH. High CO2 levels are found in bulky tissues, and flooded root systems. Evidence is presented that the slow diffusion of dissolved CO2 compared to gaseous CO2 results in its accumulation. It is proposed that the accumulation of respiratory CO2 may reduce intracellular pH values when plant tissues, cells or protoplasts are maintained in a liquid culture medium. Finally, the possible role of dark CO2 fixation and organic acid synthesis in the regulation of intracellular pH is examined.  相似文献   

17.
18.
The increases in atmospheric pCO2 over the last century are accompanied by higher concentrations of CO2(aq) in the surface oceans. This acidification of the surface ocean is expected to influence aquatic primary productivity and may also affect cyanobacterial nitrogen (N)‐fixers (diazotrophs). No data is currently available showing the response of diazotrophs to enhanced oceanic CO2(aq). We examined the influence of pCO2 [preindustrial∼250 ppmv (low), ambient∼400, future∼900 ppmv (high)] on the photosynthesis, N fixation, and growth of Trichodesmium IMS101. Trichodesmium spp. is a bloom‐forming cyanobacterium contributing substantial inputs of ‘new N’ to the oligotrophic subtropical and tropical oceans. High pCO2 enhanced N fixation, C : N ratios, filament length, and biomass of Trichodesmium in comparison with both ambient and low pCO2 cultures. Photosynthesis and respiration did not change significantly between the treatments. We suggest that enhanced N fixation and growth in the high pCO2 cultures occurs due to reallocation of energy and resources from carbon concentrating mechanisms (CCM) required under low and ambient pCO2. Thus, in oceanic regions, where light and nutrients such as P and Fe are not limiting, we expect the projected concentrations of CO2 to increase N fixation and growth of Trichodesmium. Other diazotrophs may be similarly affected, thereby enhancing inputs of new N and increasing primary productivity in the oceans.  相似文献   

19.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

20.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号