首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu J  Yin M  Wang M  Zhang X  Ge B  Liu S  Lu J  Cui Z 《Photosynthesis research》2011,107(2):187-193
The isolation of photosystem-I (PS-I) from spinach has been conducted using ultrafiltration with 300 kDa molecular weight cut-off polyethersulfone membranes. The effects of ultrafiltration operating conditions on PS-I activity were optimized using parameter scanning ultrafiltration. These conditions included solution pH, ionic strength, stirring speed, and permeate flux. The effects of detergent (Triton X-100 and n-dodecyl-beta-D-maltoside) concentration on time dependent activity of PS-I were also studied using an O2 electrode. Under optimized conditions, the PS-I purity obtained in the retentate was about 84% and the activity recovery was greater than 94% after ultrafiltration. To our knowledge, this is the first report of the isolation of a membrane protein using ultrafiltration alone.  相似文献   

2.
The one-step bioconversion of cis-epoxysuccinate (CES) to l(+)-tartaric acid by dried Rhodococcus rhodochrous cells containing CES hydrolase activity was studied by using a continuous bioconversion process. The influence of the pH and the temperature was assessed. A mathematical model was used to quantify the CES hydrolase activity and stability. The optimal pH, which resulted in a maximal CES hydrolase activity and stability, was pH 8.0. A large increase in stability (half-life time) could be obtained when the temperature was decreased from 37 to 14°C during the continuous bioconversion. A total bioconversion was maintained for more than 100 days. This resulted in a large value for the specific productivity since the effect of the large increase in stability was much more important than the decrease of activity at the lower temperature. This continuous bioconversion process was further optimised by calculating the productivity for several continuously stirred tank reactors in series. The specific productivity could be nearly doubled when the number of reactors in the series was increased from 1 to 4.  相似文献   

3.
Renaturation of recombinant human interleukin-3 produced as inclusion bodies in the transformed cells of Escherichia coli was studied and optimized. Importance was shown of removing from the protein solution the hydrophobic cellular components causing irreversible aggregation of the protein under renaturation conditions. An effect of pH on the secondary structure of the denatured protein was revealed by CD spectroscopy. It was thereby found that at pH 8.5, which is the optimal value for renaturation, the protein has the secondary structure most close to the native one. The isolation according to the scheme proposed allows preparation of interleukin-3 in 50% yield with 99% purity and biological activity 2 × 107 U/mg.  相似文献   

4.
l-Asparaginase fromEnterobacter aerogenes was purified by a simple method involving sonication of the crude cell mass, gel filtration with Sephacryl S-100 as the separating material, followed by ultrafiltration. Recent methods involve complex purification procedures of 5–6 steps. The isolation process resulted in 10-fold purification of the enzyme with a specific activity of 55 IU/mg protein and recovery of 54%. The purity was tested by capillary electrophoresis, used for the first time for documenting the purification ofl-asparaginase. The choice of the column material was critical in the purification process.  相似文献   

5.
The effect of pH on the photosynthetic properties of photosystem I (PSI) particles isolated from spinach chloroplasts were studied using various spectroscopic and activity measurements. The results indicated that the PSI light energy absorption was not affected by changing pH of suspending media. The low-temperature fluorescence yield of the dominating long-wavelength emission band at 734 nm was decreased with increasing pH, whereas it did not exhibit changes in the major peak position at pHs studied except for pH 12, where the major peak in low-temperature chlorophyll (Chl) fluorescence emission spectra was shifted toward the blue light by 5 nm. Pronounced changes were found in PSI photochemical activities. Mild alkalinity (pH 8–10) in suspending media stimulated the rate of oxygen uptake with a maximum activity of oxygen consumption at about pH 9, while the other pHs exhibited an inhibition as compared to the control at pH 7.8. The rate of P700 photooxidation increased with the increasing pH, and the optimum for the reaction activity was in the region of pH 9–11. Circular dichroism spectra revealed that a progressive increase occurred in the conformation of the α-helices as pH value decreased from pH 7.8 to 3.0 or increased from pH 7.8 to 12.0. The results demonstrated that the Chl states in PSI particles were highly stable, while the photochemical activities and protein secondary structures were very sensitive to the pH stimuli of external medium.  相似文献   

6.
Summary A d-hydantoinase was expressed in the soluble form by a recombinant E. coli strain, pE-HDT/E. coli BL21 in LB medium. The enzymatic activity of cultured cells reached 5.2–6.5 IU/ml culture at a cell turbidity of 10 at 600 nm. The expressed enzyme was efficiently purified by three steps, ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography and Sephacryl S-200 size-exclusion chromatography. With the above purification process, the enzyme was purified to more than 95% purity as estimated by SDS-PAGE. The overall recovery of enzymatic activity was 54.4% and the specific activity for substrate dl-hydantoin achieved 48 U/mg. The purified enzyme appeared as a dimer with a molecular mass of 103 kDa, as measured by size-exclusion chromatography. The enzyme was stable from pH 6 to 12 with an optimum pH at 9.5 The optimum temperature of the enzyme was 45 °C and it activity was rapidly lost over 55 °C. Divalent metal ions, including Co2+, Mn2+ and Ni 2+ ions obviously enhanced the enzymatic activity, while Zn2+ ion had a slight inhibitory effect. In addition, the dissociation of purified enzyme into its subunits occurred in the presence of 1 mM Zn2+ ion. The effect of different metal ions on the d-hydantoinase activation/attenuation was discussed.  相似文献   

7.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

8.
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.  相似文献   

9.
Glutaminase from Stenotrophomonas maltophilia NYW-81 was purified to homogeneity with a final specific activity of 325 U/mg. The molecular mass of the native enzyme was estimated to be 41 kDa by gel filtration. A subunit molecular mass of 36 kDa was measured with SDS-PAGE, thus indicating that the native enzyme is a monomer. The N-terminal amino acid sequence of the enzyme was determined to be KEAETQQKLANVVILATGGTIA. Besides l-glutamine, which was hydrolyzed with the highest specific activity (100%), l-asparagine (74%), d-glutamine (75%), and d-asparagine (67%) were also hydrolyzed. The pH and temperature optima were 9.0 and approximately 60°C, respectively. The enzyme was most stable at pH 8.0 and was highly stable (relative activities from 60 to 80%) over a wide pH range (5.0–10.0). About 70 and 50% of enzyme activity was retained even after treatment at 60 and 70°C, respectively, for 10 min. The enzyme showed high activity (86% of the original activity) in the presence of 16% NaCl. These results indicate that this enzyme has a higher salt tolerance and thermal stability than bacterial glutaminases that have been reported so far. In a model reaction of Japanese soy sauce fermentation, glutaminase from S. maltophilia exhibited high ability in the production of glutamic acid compared with glutaminases from Aspergillus oryzae, Escherichia coli, Pseudomonas citronellolis, and Micrococcus luteus, indicating that this enzyme is suitable for application in Japanese soy sauce fermentation.  相似文献   

10.
The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20?mM tris-CaCl2 buffer (pH 8.2) with a flow rate of 0.5?mL min?1. The molecular weight and purity of ~23?kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697?U?mg?1, fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.  相似文献   

11.
Supernatant of a culture ofBacillus pumilus D 78 was precipitated with ethanol and chromatographed on DEAE- and CM-cellulose to isolate and purify a neutral protease with fibrinolytic and caseinolytic activity. Analysis by ultracentrifugation and immunoelectrophoresis indicate the homogeneity of the purified enzyme with the sedimentation constant s20,w equal to 2.3. The fibrinolytic activity had a lower heat stability and was also more sensitive to pH higher than 8.0. The caseinolytic activity was stable over a wide range of pH (4.5 to 11.0). The enzyme binds acid dyes and is inhibited by Cu2+, Zn2+, Ca2+ and Fe3+, as well as byL-cysteine and KCN at a concentration of 10mM. Likewise, EDTA andp-chloromercuribenzoate show an inhibitory effect.  相似文献   

12.
We investigated the effect of several parameters, such as temperature, pH and proteins, on the fusion between synaptosomes, freshly isolated from rat brain cortex, and large unilamellar phosphatidylserine liposomes. These studies were carried out in both peroxidized and nonperoxidized synaptosomes. Mixing of membrane lipids was monitored using a fluorescence resonance energy transfer assay. Ascorbate (0.8 mm)/ Fe2+ (2.5 m)-induced peroxidation of synaptosomes enhanced the fusion process (twofold) which may reflect an increase in synaptosomal protein hydrophobicity and hence a facilitation of intermembrane aggregation. The fusion process was shown to be temperature sensitive, a reduction in the extent being observed (twofold) as the temperature was lowered from 37 to 25°C. This effect may be due to changes in membrane fluidity. The fusion process is pH dependent, an increase in both kinetics and extent being observed when the pH was lowered from 7.4 to 5.5. A significant inhibition (92% at pH 7.4; 35% at pH 5.5) of the interaction between synaptosomes and liposomes by trypsin pretreatment of synaptosomes was found, thus indicating that the fusion reaction is a protein-mediated process. The inhibitory effect of trypsin at pH 5.5 is not so strong as that at physiological pH. These results suggest that, in addition to the involvement of proteins, nonspecific interactions between the synaptosomal and liposomal membranes under acidic conditions may also play a role in the fusion process. The investigation of binding of synaptosomes to liposomes under several experimental conditions provided evidence for the participation of proteins in membrane aggregation, as well as for the role of electrostatic forces in this process, at mild acidic pH.This work was supported by Junta National de Investigação Científica e Tecnológica (JNICT) and the Calouste Gulbenkian Foundation, Portugal.  相似文献   

13.
Remmele RL  Bhat SD  Phan DH  Gombotz WR 《Biochemistry》1999,38(16):5241-5247
This study elucidates the importance of thermal reversibility as it pertains to the minimization of recombinant human Flt3 ligand aggregation and its potential role for determining solution conditions that can achieve the greatest long-term storage stability. Both thermal reversibility and Tm were evaluated as microcalorimetric parameters of stability within the range extending from pH 6 to 9, where the Tm was shown to plateau near 80 degrees C. Within this region, the reversibility was shown to decrease from 96. 6% to 15.2% while the pH was increased from 6 to 9, respectively. Accelerated stability studies conducted at 50 degrees C exhibited rates of aggregation augmented by pH that inversely correlated with the thermal reversibility data. Namely, high thermal reversibility at the Tm plateau correlated with slower rates of aggregation. Enthalpic calorimetric to van't Hoff ratios (DeltaH1/DeltaHv) yielded results close to unity within the plateau region, suggesting that the unfolding of rhFlt3 ligand was approximately two-state. Evidence that unfolding preceded the formation of the aggregate was provided by far-UV CD data of a soluble islolate of the aggregated product exhibiting a 28% loss of alpha-helix offset by a 31% gain in beta-sheet. This information combined with the thermal reversibility data provided compelling evidence that unfolding was a key event in the aggregation pathway at 50 degrees C. Minimization of aggregation was achieved at pH 6 and corroborated by evidence acquired from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion data. Correspondingly, the bioactivity was found to be optimal at pH 6. The findings link thermal reversibility to the propensity of Flt3 ligand to aggregate once unfolded in the Tm plateau region and provide a basis for relating the reversibility of thermal denaturation to the prediction of long-term storage stability in aqueous solution.  相似文献   

14.
A Raman spectrometer and dynamic light scattering system were combined in a single platform (Raman–DLS) to provide concomitant higher order structural and hydrodynamic size data for therapeutic proteins at high concentration. As model therapeutic proteins, we studied human serum albumin (HSA) and intravenous immunoglobulin (IVIG). HSA concentration and temperature interval during heating did not affect the onset temperatures for conformation perturbation or aggregation. The impact of pH on thermal stability of HSA was tested at pHs 3, 5, and 8. Stability was the greatest at pH 8, but distinct unfolding and aggregation behaviors were observed at the different pHs. HSA structural transitions and aggregation kinetics were also studied in real time during isothermal incubations at pH 7. In a forced oxidation study, it was found that hydrogen peroxide (H2O2) treatment reduced the thermal stability of HSA. Finally, the structure and thermal stability of IVIG were studied, and a comprehensive characterization of heating-induced structural perturbations and aggregation was obtained. In conclusion, by providing comprehensive data on protein tertiary and secondary structures and hydrodynamic size during real-time heating or isothermal incubation experiments, the Raman–DLS system offers unique physical insights into the properties of high-concentration protein samples.  相似文献   

15.
A tetrameric lectin, with hemagglutinating activity toward rabbit erythrocytes and with specificity toward d-mannosamine and d(+)-mannose, was isolated from the ovaries of a teleost, the cobia Rachycentron canadum. The isolation protocol comprised ion exchange chromatography on CM-cellulose and Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q, and finally gel filtration by FPLC on Superose 12. The lectin was adsorbed on all ion exchangers used. It exhibited a molecular mass of 180 kDa in gel filtration on Superose 12 and a single 45-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is a tetrameric protein. The hemagglutinating activity of the lectin was stable up to 40°C and between pH 4 and pH 10. All hemagglutinating activity disappeared at 60°C and at pH 1 and pH 13. The hemagglutinating activity was doubled in the presence of 0.1 μM FeCl3. The lectin exerted antibacterial activity against Escherichia coli with 50% inhibition at 250 μg. There was no antifungal activity toward Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, and Rhizoctonia solani at a dose of 300 μg. The lectin exhibited maximal mitogenic response from mouse splenocytes at a concentration of 14 μM.  相似文献   

16.
The microbial degradation of l-methionine was investigated in order to develop a practical process for d-methionine production from racemic methionines. Among the 1000 culture strains tested, microorganisms belonging to the Achromobacter, Bacillus, Micrococcus, Morganella, Proteus, Providencia, Pseudomonas and Sarcina genera exhibited a high l-methionine-degrading activity. Proteus vulgaris IAM 12003 was determined to be the best strain and was used as a biocatalyst for eliminating the l-isomer. The degradation of l-isomer in this P. vulgaris IAM 12003 cell was assured by the action of l-amino acid oxidase. The maximum rate of l-isomer degradation was obtained at 30 °C and pH 8.0. Under these optimal conditions, the l-isomer in a 100 g/l mixture of racemic methionines was almost degraded within 20 h, with 46.5 g d-methionine/l remaining in the reaction mixture. Crystalline d-methionine, with a chemical purity greater than 99% and optical purity of 99.9% enantiomeric excess, was obtained at a yield of 30% from the reaction mixture by simple purification. Received: 17 June 1996 / Received last revision: 11 September 1996 / Accepted: 29 September 1996  相似文献   

17.
In order to develop a practical process for d-lysine production from l-lysine, successive chemical racemization and microbial asymmetric degradation were investigated. The racemization of l-lysine proceeded quantitatively at elevated temperatures. A sample␣of 1000 strains of bacteria, fungi, yeast and actinomyces were screened for the ability to degrade l-lysine asymmetrically. Microorganisms belonging to the Achromobacter, Agrobacterium, Candida, Comamonas, Flavobacterium, Proteus, Providencia, Pseudomonas and Yarrowia genera exhibited a high l-lysine-degrading activity. Comamonas testosteroni IAM 1048 was determined to be the best strain and used as a biocatalyst for eliminating the l isomer. The degradation rate of l-lysine with C. testosteroni IAM 1048 was influenced by pH, temperature and agitation speed. Under the optimal conditions, the l isomer in a 100-g/l mixture of racemic lysine was completely degraded within 72 h, with 47 g d-lysine/l left in the reaction mixture. Crystalline d-lysine, with a chemical purity greater than 99% and optical purity of 99.9% enantiomeric excess, was obtained at a yield of 38% from the reaction mixture by simple purification. An engineering analysis of l-lysine racemization and microbial degradation was carried out to establish the basis of process design for d-lysine production. Received: 24 September 1996 / Received last revision: 8 November 1996 / Accepted: 23 November 1996  相似文献   

18.
Immobilization of Bacillus licheniformis l-arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support−1) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q m) and affinity (k a). The pH and temperature for immobilization were optimized to be pH 7.1 and 33°C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k cat/K m) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t 1/2 increased from 2 to 275 h) at 50°C following immobilization.  相似文献   

19.
A β-N-acetyl-d-glucosaminidase (EC 3.2.1.30) produced byAspergillus niger 419, was completely inactivated after heating 15 min at 65°C in 100 mM sodium phosphate buffer pH 7. The presence of 10% of polypropyleneglycol 1025 induced the thermal stability of the enzyme, the activity remaining unchanged after heating 60 min at 65°C. When this thermal treatment was used as the initial step of purification, the protein content of the crude extract was reduced by 98% without loss of the total initial enzymatic activity of the sample and a purification factor of 61. As the second and third step of purification DEAE-Sephacel, and Sephadex-G150 column chromatography were used, respectively. The final purification factor was 230 with a yield of 76%.  相似文献   

20.
Two variants of d-hydantoinase (HYD), created by deletion of one amino acid residue of at either the N- or C-terminus, were expressed in Escherichia coli and purified by two-step chromatography. Compared with HYD, HYDc1 with the C-terminal Arg deletion retained 43% activity, while HYDn1 with the N-terminal Ser deletion had no activity using dl-Hydantoin as substrate. Based on HYD dimer with a molecular weight of 103 kDa, HYDc1 is a monomer of 52 kDa and HYDn1 is a mixture of dimer and monomer. Moreover, HYDc1 displayed higher pH stability and lower thermal stability compared to HYD. In addition, the secondary and tertiary structures of HYDc1 were not significantly changed in contrast to the ones of HYDn1. All data imply that the C-terminal Arg of the HYD is crucial for homodimeric architecture of the enzyme, but non-essential for catalysis, while the N-terminal Ser is required for both conformation and catalysis of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号