首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc).  相似文献   

2.
3.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

4.
5.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

6.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

7.
8.
The genetic components responsible for the qualitative and quantitative resistance of rice to three Chinese races (C2, C4, and C5) of Xanthomonas oryzae pv. oryzae (Xoo) were investigated at the seedling and adult stages in two successive years in set of Lemont/Teqing cross introgression lines (ILs) in a Teqing background, to create a complete linkage map using 160 well-distributed SSR markers. Teqing was resistant to C2 and C4, but moderately susceptible to C5, whereas Lemont was susceptible to all three races. Highly significant correlations were detected among the resistance to different races at different developmental stages. A major gene (Xa4), 14 main-effect QTLs (M-QTLs), and 18 epistatic QTLs were identified in the two developmental stages over 2 years, and were largely responsible for the segregation of resistance in the ILs. In 2007, the Lemont alleles at all loci in the seedling stage, except QBbr10 to C4, increased lesion length (LL) or decreased resistance. The Teqing allele at the Xa4 locus acted as a resistance gene against C2 and C4, but acted as a M-QTL when its resistance was overcome by the virulent race C5. M-QTLs showed a degree of race specificity and had a cumulative effect on resistance. Most M-QTLs (94%) consistently expressed resistance to the same race at the seedling and adult stages, indicating that a high degree of genetic overlap exists between Xoo resistance at both developmental stages in rice. Among the digenic interactions, most co-introgressed Lemont alleles at the two epistatic loci lead to significantly smaller LL with all three races, compared to other types of interacting alleles at both development stages. The results indicate that a high level of resistance may be achieved by the cumulative effect of multiple M-QTLs, including the residual effects of “defeated” major resistance genes and the epistatic effects of co-introgression from diverse susceptible varieties.  相似文献   

9.
Yang W  Liu Y  Chen L  Gao T  Hu B  Zhang D  Liu F 《Current microbiology》2007,54(4):307-314
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. In order to understand the gene of zinc uptake regulator (zur) involved in virulence of the pathogen in rice, we generated a mutant OSZRM by homologous suicide plasmid integration. The mutant failed to grow in NYGB medium supplemented with Zn2+ or Fe3+ at a concentration of 500 μM or 6 mM, whereas the wild-type strain grew well at the same conditions. The zur mutant was hypersensitive to hydrogen peroxide and exhibited reduction catalase activity and the production of extracellular polysaccharide (EPS). Interestingly, the mutant showed a reduction in virulence on rice but still kept triggering hypersensitive response (HR) in tobacco. When the mutant was complemented with the zur gene, the response was recovered to wild-type. These results suggested that zur gene is a functional member of the Zur regulator family that controls zinc and iron homeostasis, oxidative stress, and EPS production, which is necessary for virulence in X. oryzae pv. oryzae. Wanfeng Yang and Yan Liu contributed equally to this work  相似文献   

10.

Background  

Rice CEBiP recognizes chitin oligosaccharides on the fungal cell surface or released into the plant apoplast, leading to the expression of plant disease resistance against fungal infection. However, it has not yet been reported whether CEBiP is actually required for restricting the growth of fungal pathogens. Here we evaluated the involvement of a putative chitin receptor gene in the basal resistance of barley to the ssd1 mutant of Magnaporthe oryzae, which induces multiple host defense responses.  相似文献   

11.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

12.
13.
14.

Background

Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly.

Methods

A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked.

Results

In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site http://amigo.geneontology.org/cgi-bin/amigo/go.cgi. Additionally, the genome of M. oryzae is constantly being refined and updated as new information is incorporated. For the latest GO annotation of Version 6 genome, please visit our website http://scotland.fgl.ncsu.edu/smeng/GoAnnotationMagnaporthegrisea.html. The preliminary GO annotation of Version 6 genome is placed at a local MySql database that is publically queryable via a user-friendly interface Adhoc Query System.

Conclusion

Our analysis provides comprehensive and robust GO annotations of the M. oryzae genome assemblies that will be solid foundations for further functional interrogation of M. oryzae.
  相似文献   

15.
16.
The blast resistance gene Pik-p, mapping to the Pik locus on the long arm of rice chromosome 11, was isolated by map-based in silico cloning. Four NBS-LRR genes are present in the target region of cv. Nipponbare, and a presence/absence analysis in the Pik-p carrier cv. K60 excluded two of these as candidates for Pik-p. The other two candidates (KP3 and KP4) were expressed in cv. K60. A loss-of-function experiment by RNAi showed that both KP3 and KP4 are required for Pik-p function, while a gain-of-function experiment by complementation test revealed that neither KP3 nor KP4 on their own can impart resistance, but that resistance was expressed when both were introduced simultaneously. Both Pikp-1 (KP3) and Pikp-2 (KP4) encode coiled-coil NBS-LRR proteins and share, respectively, 95 and 99% peptide identity with the two alleles, Pikm1-TS and Pikm2-TS. The Pikp-1 and Pikp-2 sequences share only limited homology. Their sequence allowed Pik-p to be distinguished from Pik, Pik-s, Pik-m and Pik-h. Both Pikp-1 and Pikp-2 were constitutively expressed in cv. K60 and only marginally induced by blast infection.  相似文献   

17.

Background  

Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight disease. Xoo produces a range of virulence factors, including EPS, extracellular enzyme, iron-chelating siderophores, and type III-secretion dependent effectors, which are collectively essential for virulence. Genetic and genomics evidence suggest that Xoo might use the diffusible signal factor (DSF) type quorum sensing (QS) system to regulate the virulence factor production. However, little is known about the chemical structure of the DSF-like signal(s) produced by Xoo and the factors influencing the signal production.  相似文献   

18.
Rice brown spot, caused by Bipolaris oryzae, can be a serious disease causing a considerable yield loss. Trichoderma harzianum is an effective biocontrol agent for a number of plant fungal diseases. Thus, this research was carried out to investigate the mechanisms of action by which T. harzianum antagonizes Bipolaris oryzae in vitro, and the efficacy of spray application of a spore suspension of T. harzianum for control of rice brown spot disease under field conditions. In vitro, the antagonistic behavior of T. harzianum resulted in the overgrowth of B. oryzae by T. harzianum, while the␣antifungal metabolites of T.␣harzianum completely prevented the linear growth of B. oryzae. Light and scanning electron microscope (SEM) observations showed no evidence that mycoparasitism contributed to the aggressive nature of the tested isolate of T. harzianum against B. oryzae. Under field conditions, spraying of a spore suspension of T. harzianum at 108 spore ml−1 significantly reduced the disease severity (DS) and disease incidence (DI) on the plant leaves, and also significantly increased the grain yield, total grain carbohydrate, and protein, and led to a significant increase in the total photosynthetic pigments (chlorophyll a and b and carotenoids) in rice leaves.  相似文献   

19.
Gamma-glutamylcysteine synthetase (γ-GCS) catalyzes the first, rate-limiting step in the biosynthesis of glutathione (GSH). To evaluate the protective role of cellular GSH against arsenic-induced oxidative stress in Caenorhabditis elegans (C. elegans), we examined the effect of the C. elegans ortholog of GCS(h), gcs-1, in response to inorganic arsenic exposure. We have evaluated the responses of wild-type and gcs-1 mutant nematodes to both inorganic arsenite (As(III)) and arsenate (As(V)) ions and found that gcs-1 mutant nematodes are more sensitive to arsenic toxicity than that of wild-type animals. The amount of metal ion required to kill half of the population of worms falls in the order of wild-type/As(V)>gcs-1/As(V)> wild-type/As(III)>gcs-1/As(III). gcs-1 mutant nematodes also showed an earlier response to the exposure of As(III) and As(V) than that of wild-type animals. Pretreatment with GSH significantly raised the survival rate of gcs-1 mutant worms compared to As(III)- or As(V)-treated worms alone. These results indicate that GCS-1 is essential for the synthesis of intracellular GSH in C. elegans and consequently that the intracellular GSH status plays a critical role in protection of C. elegans from arsenic-induced oxidative stress.  相似文献   

20.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating plant bacterial disease worldwide. Different bacterial blight resistance (R) genes confer race-specific resistance to different strains of Xoo. We fine mapped a fully recessive gene, xa24, for bacterial blight resistance to a 71-kb DNA fragment in the long arm of rice chromosome 2 using polymerase chain reaction-based molecular markers. The xa24 gene confers disease resistance at the seedling and adult stages. It mediates resistance to at least the Philippine Xoo races 4, 6 and 10 and Chinese Xoo strains Zhe173, JL691 and KS-1-21. Sequence analysis of the DNA fragment harboring the dominant (susceptible) allele of xa24 suggests that this gene should encode a novel protein that is not homologous to any known R proteins. These results will greatly facilitate the isolation and characterization of xa24. The markers will be convenient tools for marker-assisted selection of xa24 in breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号