首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat bran, a by-product of the wheat milling industry, consists mainly of hemicellulose, starch and protein. In this study, the hydrolysate of wheat bran pretreated with dilute sulfuric acid was used as a substrate to produce ABE (acetone, butanol and ethanol) using Clostridium beijerinckii ATCC 55025. The wheat bran hydrolysate contained 53.1 g/l total reducing sugars, including 21.3 g/l of glucose, 17.4 g/l of xylose and 10.6 g/l of arabinose. C. beijerinckii ATCC 55025 can utilize hexose and pentose simultaneously in the hydrolysate to produce ABE. After 72 h of fermentation, the total ABE in the system was 11.8 g/l, of which acetone, butanol and ethanol were 2.2, 8.8 and 0.8 g/l, respectively. The fermentation resulted in an ABE yield of 0.32 and productivity of 0.16 g l−1 h−1. This study suggests that wheat bran can be a potential renewable resource for ABE fermentation.  相似文献   

2.
The effect of acetic acid and formic acid on acetone-butanol-ethanol (ABE) production by solventogenic Clostridia was investigated. The ABE concentration in Clostridium acetobutylicum was found to have increased slightly on addition of 3.7 ∼ 9.7 g/L acetic acid, but was found to have drastically reduced in the presence of 11.7 g/L acetic acid. However, the solvent production of C. beijerinckii was not affected by addition of acetic acid in the range of 3.7 ∼ 11.7 g/L. C. acetobutylicum was more vulnerable to formic acid than C. beijerinckii. In C. acetobutylicum, the total ABE production decreased to 77% on addition of 0.4 g/L formic acid and 25% with 1.0 g/L formic acid. The total ABE production by C. acetobutylicum was also noted to have decreased from 15.1 to 8.6 g/L when 8.7 g/L acetic acid and 0.4 g/L formic acid co-existed. The solvent production by C. beijerinckii was not affected at all under the tested concentration range of formic acid (0.0 ∼ 1.0 g/L) and co-presence of acetic acid and formic acid. Therefore, C. beijerinckii is more favorable than C. acetobutylicum when the ABE is produced using lignocellulosic hydrolysate containing acetic and formic acid.  相似文献   

3.
Mu X  Sun W  Liu C  Wang H 《Biotechnology letters》2011,33(8):1587-1591
Water extract of steam-exploded corn stalk (SECS) was detoxified and used as feed for acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii. Utilization of water extract improved the total ABE yield (g ABE/g dry SECS). Separated fermentation showed higher fermentability (0.078 g ABE/g dry SECS) over typical fermentation (0.058 g ABE/g dry SECS). Furthermore, the final ABE yields (g ABE/g utilized sugar) from water extract neutralized by Ca(OH)2, NaOH, and Na2SO3 were 0.16, 0.1 and 0.07, respectively, suggesting that Ca(OH)2 had the best detoxification effect.  相似文献   

4.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

5.
Low-cost raw materials can be used to reduce significantly the production cost of polyhydroxyalkanoates (PHA). In this study, extruded rice bran (ERB) and extruded cornstarch (ECS) were used as carbon sources to produce PHA by an archaea, Haloferax mediterranei, which cannot use native rice bran or cornstarch as a carbon source. By employing pH-stat control strategy to maintain pH at 6.9–7.1 in a 5-liter jar fermentor using ERB:ECS (1:8 g/g) as the major carbon source, we obtained a cell concentration of 140 g/L, PHA concentration of 77.8 g/L and PHA content of 55.6 wt.% in a repeated fed-batch fermentation. In contrast, when ECS was used as the major carbon source, we obtained 62.6 g/L cell concentration, 24.2 g/L PHA concentration and 38.7 wt.% PHA content. Under a hyper-saline condition and with no nitrogen-limitation restriction, the repeated fed-batch process can be sustained a long time for the mass production of PHA.  相似文献   

6.
Development of a butanologenic strain with high selectivity for butanol production is often proposed as a possible route for improving the economics of biobutanol production by solventogenic Clostridium species. The acetoacetate decarboxylase (aadc) gene encoding acetoacetate decarboxylase (AADC), which catalyzes the decarboxylation of acetoacetate into acetone and CO2, was successfully disrupted by homologous recombination in solventogenic Clostridium beijerinckii NCIMB 8052 to generate an aadc mutant. Our fermentation studies revealed that this mutant produces a maximum acetone concentration of 3 g/L (in P2 medium), a value comparable to that produced by wild-type C. beijerinckii 8052. Therefore, we postulated that AADC-catalyzed decarboxylation of acetoacetate is not the sole means for acetone generation. Our subsequent finding that non-enzymatic decarboxylation of acetoacetate in vitro, under conditions similar to in vivo acetone–butanol–ethanol (ABE) fermentation, produces 1.3 to 5.2 g/L acetone between pH 6.5 and 4 helps rationalize why various knock-out and knock-down strategies designed to disrupt aadc in solventogenic Clostridium species did not eliminate acetone production during ABE fermentation. Based on these results, we discuss alternatives to enhance selectivity for butanol production.  相似文献   

7.
Continuous production of ethanol from alkaline peroxide pretreated and enzymatically saccharified wheat straw hydrolysate by ethanologenic recombinant Escherichia coli strain FBR5 was investigated under various conditions at controlled pH 6.5 and 35°C. The strain FBR5 was chosen because of its ability to ferment both hexose and pentose sugars under semi-anaerobic conditions without using antibiotics. The average ethanol produced from the available sugars (21.9–47.8 g/L) ranged from 8.8 to 17.3 g/L (0.28–0.45 g/g available sugars, 0.31–0.48 g/g sugar consumed) with ethanol productivity of 0.27–0.78 g l−1 h−1 in a set of 14 continuous culture (CC) runs (16–105 days). During these CC runs, no loss of ethanol productivity was observed. This is the first report on the continuous production of ethanol by the recombinant bacterium from a lignocellulosic hydrolysate.  相似文献   

8.
The optimal conditions for production of carboxymethylcellulase (CMCase) of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 were established at a flask scale using the response surface method (RSM). The optimal conditions of rice bran, tryptone, and initial pH of the medium for cell growth extracted by Design Expert Software were 66.1 g/L, 6.2 g/L, and 7.2, respectively, whereas those for production of CMCase were 58.0 g/L, 5.0 g/L, and 7.1. The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that significant factor (“probe > F” less than 0.0500) for cell growth was rice bran, whereas those for production of CMCase were rice bran and initial pH of the medium. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/DL-3 were found to be 37°C. The optimal agitation speed and aeration rate of 7 L bioreactors for cell growth were 498 rpm and 1.4 vvm, whereas those for production of CMCase were 395 rpm and 1.1 vvm. The ANOVA of results indicated that the aeration rate was more significant factor (“probe > F” less than 0.0001) than the agitation speed for cell growth and production of CMCase. The optimal inner pressure for cell growth was 0.08 MPa, whereas that for the production of CMCase was 0.06 MPa. The maximal production of CMCase by E. coli JM109/DL-3 under optimized conditions was 871.0 U/mL, which was 3.0 times higher than the initial production of CMCase before optimization.  相似文献   

9.
The production of fatty acid methyl esters (FAMEs) by a two-step in-situ transesterification from two kinds of rice bran was investigated in this study. The method included an in-situ acid-catalyzed esterification followed by an in-situ base-catalyzed transesterification. Free fatty acids (FFAs) level was reduced to less than 1% for both rice bran A (initial FFAs content = 3%) and rice bran B (initial FFAs content = 30%) in the first step under the following conditions: 10 g rice bran, methanol to rice bran ratio 15 mL/g, H2SO4 to rice bran mass ratio 0.18, 60 °C reaction temperature, 600 rpm stirring rate, 15 min reaction time. The organic phase of the first step product was collected and subjected to a second step reaction by adding 8 mL of 5 N NaOH solution and allowing to react for 60 and 30 min for rice bran A and rice bran B, respectively. FAMEs yields of 96.8% and 97.4% were obtained for rice bran A and rice bran B, respectively, after this two-step in-situ reaction.  相似文献   

10.
Global warming alerts and threats are on the rise due to the utilization of fossil fuels. Alternative fuel sources like bio-ethanol and biodiesel are being produced to combat against these threats. Bio-ethanol can be produced from a range of substrate. The present study is aimed at the Production of bioethanol from pretreated agricultural substrate using enzymatic hydrolysis and simultaneous saccharification with the addition of purified fungal enzyme. Most cellulosic biomass is not fermentable without appropriate pretreatment methods and so dilute sulfuric acid pretreatment was applied to make the cellulose contained in the waste susceptible to endoglucanase enzyme. A range of acid pretreatment of wheat bran was made in which the sample that was pretreated with 1% dilute sulfuric acid gave maximum yield of ethanol in both methods such as 5.83 g L−1 and 5.27 g L−1, respectively. Ethanol produced from renewable and cheap agricultural products (wheat bran) provides reduction in green house gas emission, carbon monoxide, sulfur, and helps to eliminate smog from the environment.  相似文献   

11.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

12.
Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2 h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 °C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.  相似文献   

13.
The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2′,7′-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 μg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 μM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.  相似文献   

14.
Dilute acid pretreatment is a leading pretreatment technology for biomass to ethanol conversion due to the comparatively low chemical cost and effective hemicellulose solubilization. The conventional dilute acid pretreatment processes use relatively large quantities of sulfuric acid and require alkali for pH adjustment afterwards. Significant amounts of sulfate salts are generated as by-products, which have to be properly treated before disposal. Wastewater treatment is an expensive, yet indispensable part of commercial level biomass-to-ethanol plants. Therefore, reducing acid use to the lowest level possible would be of great interest to the emerging biomass-to-ethanol industry. In this study, a dilute acid pretreatment process was developed for the pretreatment of corn stover. The pretreatment was conducted at lower acid levels than the conventional process reported in the literature while using longer residence times. The study indicates that a 50% reduction in acid consumption can be achieved without compromising pretreatment efficiency when the pretreatment time was extended from 1–5 min to 15–20 min. To avoid undesirable sugar degradation and inhibitor generation, temperatures should be controlled below 170°C. When the sulfuric acid-to-lignocellulosic biomass ratio was kept at 0.025 g acid/g dry biomass, a cellulose-to-glucose conversion of 72.7% can be achieved at an enzyme loading of 0.016 g/g corn stover. It was also found that acid loading based on total solids (g acid/g dry biomass) governs the pretreatment efficiency rather than the acid concentration (g acid/g pretreatment liquid). While the acid loading on lignocellulosic biomass may be achieved through various combinations of solids loading and acid concentration in the pretreatment step, this work shows that it is unlikely to reduce acid use without undermining pretreatment efficiency simply by increasing the solid content in pretreatment reactors, therefore acid loading on biomass is indicated to be the key factor in effective dilute acid pretreatment.  相似文献   

15.
To reduce nutrient cost for lactic acid production, rice bran, one of agricultural wastes, was chosen as a nutrient source in this study. Although rice bran is rich in protein and vitamins, the use of rice bran without any treatment was inefficient in lactic acid production. Rice bran was treated by acid-hydrolysis before it was put in experiment, when it was hydrolyzed at initial pH 1, 30 g/L rice bran could provide a productivity to that degree of about 8 g/L YE, showing such a desirable result that the use of rice bran as nutrient source would be a solution for reducing nutrient cost. However, the addition of hydrolyzed rice bran prolonged lag phase of fermentation, especially, in the fermentation with rice bran hydrolyzed at initial pH 0.5, a prolonged lag phase of about 40 h was observed. According to the quantitative determination of thiamine, pyridoxine, organic nitrogen and carbon, the prolongation of lag phase might be the result from the destruction of B vitamins and excessive hydrolysis of protein. To shorten the lag phase, combining hydrolyzed rice bran with yeast extract (YE) of small amount was considered to be a solution. When 3g/L YE was combined with 30 g/L rice bran hydrolyzed at initial pH 1, obtained was a productivity 1.6 times higher than that of the control fermentation with 15 g/L YE.  相似文献   

16.
Rice bran sample (12 Kg) was extracted and rice bran oil (RBO ≅ 76.8 g) was saponified. The resulted unsaponifiable matter of RBO (RBO unsap) was qualitatively and quantitatively estimated using different chromatographic analyses. RBO, produced 9.65% unsaponifiable matter with the following contents, cholesterol, 6.75%; stigmasterol, 3.4%; β. sitosterol, 10.23% and campesterol, 4.2%, in addition to unknown phytosterols, hydrocarbons and waxes. Microbial transformation process started by screening of 35 bacterial strains, locally isolated from rice bran, air and soil, using RBO unsap as a carbon and an energy source to produce some pharmaceutically useful C18 and C19 steroids. Moraxella ovis was the most potent isolate for its highest capability to utilize RBO unsap and selectively degrade the phytosterols side-chain producing androst-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), testosterone (T) and estrone (E). The RBO unsap was the best carbon and energy source. Maximum production of the desired products was observed in 36 h, pH 7 and at 30°C by M. ovis.  相似文献   

17.
The effect of extracted phenolics or spent bran added to decorticated red sorghum kernels during fuel ethanol production was studied and compared to maize and whole red and white sorghums. After liquefaction, free amino nitrogen ranged from 65 to 101 mg/l and at the end of saccharification all mashes had approx. 80 g glucose and 2–5 g maltose/100 g meal (dry basis). Saccharified worts were fermented giving 50–90 ml ethanol/l. The lowest fermentation efficiency (76%) was obtained in the white sorghum. Ethanol yields indicate that sorghum bran or its associated phenolics did not significantly affect the efficiency of the sequential steps involved in ethanol production. Red sorghum is a good alternative to maize to produce ethanol and the difference regarding white sorghum and maize was mainly due to endosperm protein structure and composition.  相似文献   

18.
Fermentation of sulfuric acid treated corn fiber hydrolysate (SACFH) inhibited cell growth and butanol production (1.7 ± 0.2 g/L acetone butanol ethanol or ABE) by Clostridium beijerinckii BA101. Treatment of SACFH with XAD-4 resin removed some of the inhibitors resulting in the production of 9.3 ± 0.5 g/L ABE and a yield of 0.39 ± 0.015. Fermentation of enzyme treated corn fiber hydrolysate (ETCFH) did not reveal any cell inhibition and resulted in the production of 8.6 ± 1.0 g/L ABE and used 24.6 g/L total sugars. ABE production from fermentation of 25 g/L glucose and 25 g/L xylose was 9.9 ± 0.4 and 9.6 ± 0.4 g/L, respectively, suggesting that the culture was able to utilize xylose as efficiently as glucose. Production of only 9.3 ± 0.5 g/L ABE (compared with 17.7 g/L ABE from fermentation of 55 g/L glucose-control) from the XAD-4 treated SACFH suggested that some fermentation inhibitors may still be present following treatment. It is suggested that inhibitory components be completely removed from the SACFH prior to fermentation with C. beijerinckii BA101. In our fermentations, an ABE yield ranging from 0.35 to 0.39 was obtained, which is higher than reported by the other investigators.  相似文献   

19.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

20.
The present study investigates the operational conditions for organosolvent pretreatment and hydrolysis of rice straw. Among the different organic acids and organic solvents tested, acetone was found to be most effective based on the fermentable sugar yield. Optimization of process parameters for acetone pretreatment were carried out. The structural changes before and after pretreatment were investigated by scanning electron microscopy, X-ray diffraction and Fourier transform infrared (FTIR) analysis. The X-ray diffraction profile showed that the degree of crystallinity was higher for acetone pretreated biomass than that of the native. FTIR spectrum also exhibited significant difference between the native and pretreated samples. Under optimum pretreatment conditions 0.458 g of reducing sugar was produced per gram of pretreated biomass with a fermentation efficiency of 39%. Optimization of process parameters for hydrolysis such as biomass loading, enzyme loading, surfactant concentration and incubation time was done using Box–Benhken design. The results indicate that acetone pretreated rice straw can be used as a good feed stock for bioethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号