首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent study we reported that CD27 is expressed on a subpopulation of human B lymphocytes and presented circumstantial phenotypic evidence that CD27 expression may be acquired late during B cell differentiation. Here we present functional data showing that, after in vitro stimulation, CD27+ but not CD27- B cells secrete large amounts of both IgM and IgG. Using double immunofluorescence staining of CD27 and IgD, three functionally different B cell subsets representing distinct stages of B cell differentiation can be isolated: 1) the CD27- IgD+ B cells, which do not secrete appreciable Ig; 2) the CD27+IgD+ B cells, which exclusively secrete IgM; and 3) the CD27+IgD- B cells, which comprise the IgG-producing cells. Furthermore, costimulation of CD27- B cells with low m.w. B cell growth factor, in the presence or in the absence of a CD40 mAb, does not induce these cells to become Ig-secreting cells. Although CD27- B cells hardly secrete Ig of any isotype in response to Staphylococcus aureus+IL-2, these cells proliferate vigorously and express the IL-2R alpha chain (CD25) under these stimulatory conditions. Furthermore, both CD27- and CD27+ B cells are capable of producing similar amounts of IL-6 and TNF-alpha. Taken together, these findings indicate that CD27 is a unique non-Ig surface marker discriminating naive from primed B lymphocytes. Furthermore, the capacity to proliferate and to secrete the B cell differentiation factors IL-6 and TNF-alpha already exists at an early B cell differentiation stage at which the cells lack CD27 expression and are not induced to produce Ig.  相似文献   

2.
CD28 is an Ag of 44-kDa Mr that is expressed on the membrane of the majority of human T cells and that is recognized by mAb 9.3. The functional effects of mAb 9.3 on peripheral blood T cells were studied. mAb 9.3 was not mitogenic, unless it was combined with PMA. When CD28 was cross-linked after binding of mAb 9.3 to the T cell by immobilized or soluble anti-mouse IgG, T cells proliferated in response to rIL-2, provided that monocytes were also present. The additional signal required for IL-2 responsiveness after cross-linking of CD28 could also be delivered in cultures of purified T cells by a cellfree monocyte culture supernatant. Expression of IL-2R on about 10% of the T cells was demonstrated by staining with an anti-IL-2R mAb, and was found to be largely restricted to CD4+ cells. The active compound responsible for the helper signal in the monocyte culture supernatant was identified as IL-6 because purified IL-6 (but not IL-1 beta) had similar activity and because an antiserum to IL-6 (but not an antiserum to IL-1 beta) neutralized the activity of the monocyte supernatant and blocked T cell proliferation. An anti-IL-2R antibody also completely inhibited T cell proliferation induced by the combination of mAb 9.3, IL-2, and IL-6. Our results provide evidence that cross-linking of CD28 induces functional IL-2R and that this activity is dependent on a helper signal provided by monocytes, more specifically IL-6. Moreover, our results indicate that IL-6 (previously called B cell stimulatory factor-2) is active on T cells. If a natural ligand for CD28 can be identified, the mechanism of induction of IL-2 responsiveness described here might explain how T cells become nonspecifically involved in an ongoing cellular immune reaction.  相似文献   

3.
Human tonsillar B cells were separated into three distinct subpopulations, Ba-/IgD+, Ba+/IgD+, and Ba+/IgD-, by using a B cell-specific monoclonal antibody (anti-Ba) that recognizes only activated B cells, and anti-IgD antibody. Stimulation of Ba-/IgD+ cells with anti-mu plus PHA-conditioned culture supernatant (PHA-sup) or TPA induced Ba+/IgD+ cells, which reverted to Ba-/IgD+ phenotype in the absence of continuous stimulation. Further stimulation of Ba+/IgD+ cells with several B cell activators, such as TPA plus anti-mu or PWM plus T cells, resulted in the loss of IgD expression. Three-color FACS analysis showed that the expression of transferrin receptor (TFR) was at its maximum in Ba+/IgD- cells, and the intensity of this expression was proportional to that of Ba expression in Ba+/IgD+ cells. PHA-sup induced maximum proliferation in Ba+/IgD- cells, and the degree of response was a function of the intensity of Ba expression in Ba+/IgD+ cells. PHA-sup or purified BCDF (BSF-2) induced Ig secretion preferentially in Ba+/IgD- cells. Taken together, these results show that resting B cells (Ba-/IgD+) are activated into Ba+/IgD+ cells, and then into Ba+/IgD- cells, under mitogenic stimulation, and BCDF induces the final maturation of Ba+/IgD- cells into Ig-secreting cells. Ba+/IgD- cells, which maximally expressed TFR as well as Ba and displayed maximum proliferative response to PHA-sup, did not express any Tac antigen. On the other hand, in vitro activated B cells expressed Ba and TFR as well as Tac antigen.  相似文献   

4.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

5.
Membrane receptors specific for IgD (IgD-R) have been identified on murine CD4+ and human CD4+ and CD8+ T lymphocytes. Up-regulation of these IgD-specific receptors can be achieved by exposure of such T cells to various stimuli, including oligomeric or Ag cross-linked IgD, IL-2, IL-4, and T cell mitogens, such as PHA. Previous studies with murine IgD-R+ splenic T cells and IgD-R+ T hybridoma cells have demonstrated the existence of soluble IgD-binding factors (IgD-BF) that are shed or released into the medium in which these cells are grown. In our study, human peripheral blood T cells and IgD-R+ T hybridoma cells were examined for their ability to produce human IgD-BF. PHA stimulation of peripheral blood T cells results in their release of an IgD-specific factor with an apparent Mr of 70 kDa. IgD- Sepharose-purified IgD-BF was able to competitively inhibit rosetting of IgD-R+ T cells with IgD-coated RBC. Immunoblot assays in which alkaline phosphatase-conjugated human IgD myeloma protein was used as a probe, confirmed the IgD specificity of IgD-BF. An IgD-BF-specific mAb (LTB9) that also reacts with membrane IgD-R was produced after immunization of BALB/c mice with this factor. LTB9 was able to detect IgD-BF in the supernatants derived from human IgD-R+, tetanus toxoid-specific T hybridoma cells, H9-CEM1, and to stain membrane IgD-R by indirect immunofluorescence. Stimulation of H9-CEM1 cells with immobilized IgD resulted in up-regulation of membrane IgD-R expression, as measured cytofluorometrically with LTB9-stained cells, and potentiated release of IgD-BF from these cells. Finally, LTB9 as well as IgD-Sepharose, immunoprecipitated a 70-kDa protein from the lysates of biosynthetically labeled H9-CEM1 cells. Similar immunoprecipitation results were obtained with H9-CEM1-derived supernatants containing IgD-BF. Taken together, these results support the hypothesis that human T cell membrane IgD-R are released as soluble IgD-BF.  相似文献   

6.
Although resting B cells are poor accessory cells for signals transmitted through the TCR/CD3 complex, we report that these B cells can support T cell proliferation when T cell activating signals are delivered through CD2. This was first suggested when leucine methyl ester treatment of PBMC abolished proliferation induced by anti-CD3, but not by the accessory cell-dependent anti-CD2 mAb combination, GT2 and OKT11. Then we demonstrated that unstimulated, resting B cells could support the proliferation of both CD4+ and CD8+ T cells. Aggregated IgG inhibited proliferation, suggesting that anti-CD2 mAb bound to T cells were cross-linked by attachment to B cell FcR. Two lines of evidence suggested that lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interaction was crucial for anti-CD2-induced proliferation. First, proliferation was blocked by mAb against these adhesion molecules. Second, intercellular adhesion molecule-1 expression rapidly increased on resting B cells after the addition of anti-CD2, but not anti-CD3. This was of interest because fixed monocytes, but not fixed B cells, were able to support the proliferative response. In contrast to lymphocyte function-associated Ag-1/intercellular adhesion molecule-1, CD28/B7 interaction was not required for anti-CD2-induced proliferation, although ligation of these molecules provided important costimulatory signals for stimulation by anti-CD3. Finally, neutralizing antibodies against IL-1 alpha, IL-1 beta, and IL-6 showed only modest inhibitory effects on T cell proliferation. The addition of IL-1 and/or IL-6 to T cells failed to substitute for accessory cells and were only partially effective with fixed B cells. Further evidence of a linkage between CD2 and CD45 isoforms was obtained. Anti-CD45RA, but not anti-CD45RO, potentiated anti-CD2-induced T cell proliferation. These studies have revealed a novel role for resting B cells as accessory cells and have documented costimulatory signals that are important for this effect. Because Ag-presentation by resting B cells to T cells generally leads to T cell nonresponsiveness, it is possible that this tolerogenic signal may be converted to an activation signal if there is concurrent perturbation of CD2 on T cells.  相似文献   

7.
8.
Highly purified human peripheral blood B cells stimulated with Cowan I Staphylococcus aureus (SA) and mitogen-activated T cell supernatants (T supt) generated large numbers of immunoglobulin (Ig)-secreting cells (ISC), whereas fewer ISC developed in cultures containing T supt in the absence of SA. To determine whether surface Ig isotype expression defined responsive B cell subsets, IgD+ and IgD- B cells were prepared with the fluorescence-activated cell sorter. Whereas both the IgD+ and IgD- B cells responded to SA + T supt, only the IgD- subset generated substantial numbers of ISC in response to T supt alone. Analysis of secreted Ig revealed that IgG and IgA were the predominant isotypes secreted by IgD- B cells in response to T supt or SA + T supt. By contrast, the IgD+ cells secreted predominantly IgM in response to SA + T supt but not to T supt alone. When responsiveness to pokeweed mitogen (PWM) was examined in the presence of supplemental T cells, the IgD- subset was found to be greatly enriched for responsive cells, and again, IgG and IgA were the predominant isotypes secreted, although these cells were also capable of secreting some IgM. The magnitude of the response induced by PWM from IgD- B cells was usually greater than that induced by SA + T supt. Although IgD+ B cells responded poorly to PWM, the differentiation of a small number of IgM-secreting cells was routinely stimulated by this polyclonal activator in the presence of T cells. The magnitude of the PWM response by IgD+ B cells was always greatly diminished compared with that stimulated by SA + T supt. Cell cycle analysis after acridine orange staining, cell volume measurement, and staining for expression of activation antigens (transferrin receptor and 4F2) indicated that the IgD- B cells were largely resting, but did contain a population of activated cells. Removal of activated 4F2+ cells from the IgD- subset diminished but did not abolish their capacity to generate ISC in response to SA + T supt or PWM in the presence of T cells. These results suggest that the IgD- population contains both an activated 4F2+ and a resting 4F2- subset. The data emphasize that multiple subpopulations of peripheral blood B cells contain precursors of ISC. Moreover, the responsiveness of the subsets to various stimuli and the Ig isotype subsequently secreted appear to be intrinsic features of each subset.  相似文献   

9.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

10.
CD43 (large sialoglycoprotein) is a heavily glycosylated protein expressed on virtually all thymus-derived lymphocytes, on a subpopulation of B cells and on granulocytes. Recently, an anti-CD43 mAb (L10) was shown to induce proliferation in T cells comparable to that induced by anti-CD3. The L10 antibody was reported to react with both sialylated and desialylated CD43. In order to further elucidate the role of CD43 in various T cell functions we have studied the biologic properties of two other mAb (B1B6 and E11B, IgG1) directed against sialic acid-dependent epitopes on CD43. Addition of low amounts of antibody (5 to 10 ng/ml) to freshly isolated T cells or to T cell lines resulted in a rapid clustering of the cells. Fab fragments were also active albeit at a 10-fold higher concentration. Aggregation was dependent on active cell metabolism (inhibited by azide and at low temperatures), on the presence of divalent cations (Mg2+) and was inhibited by antibodies to CD18 but not by antibodies to CD11a (leukocyte function-associated Ag-1 alpha). B1B6 and E11B were poorly mitogenic when added alone in soluble form to PBL or to T cells. However, supernatants from cultures of PBL treated with B1B6 for 2 days contained IL-2 activity. No increase in the number of CD25+ cells was seen during the same period. Exogenously added IL-2 did not synergize with B1B6 or E11B in activation of PBL, whereas proliferation was significantly increased by the addition of the antibodies to activation systems with low endogenous production of IL-2 (PMA or soluble anti-CD3). The anti-CD43 antibodies amplified T cell proliferative responses induced by Con A or leukoagglutinin from Phaseolus vulgaris. F(ab')2 fragments enhanced proliferation significantly better than Fab fragments suggesting that cross-linking of CD43 molecules was an essential features of the amplifying signal. Compared with cultures activated by Con A alone, an increased number of CD25+ cells and of blast cells as well as an increased IL-2 production was observed in cultures activated by B1B6-Con A. The results indicate that regulatory signals, which may function to modify homo- or heterotypic T cell adhesion as well as autocrine production of IL-2, can be transduced through CD43.  相似文献   

11.
The ability of IL-4 to influence the developmental expression of the murine B cell IgE Fc receptor (Fc epsilon R) was examined. Spleen cells from neonatal mice of increasing age were incubated overnight with IL-4 and subsequently examined with multicolor flow cytometry. The results demonstrate that IL-4 can significantly increase the number of maturing B cells which express the Fc epsilon R. This effect was only seen however, on those neonatal B cells which already displayed surface IgD. Splenic B cells which were IgM+, IgD- failed to express the Fc epsilon R when treated with IL-4, even though they responded by increasing their level of class II Ag expression. Further experiments showed that the inability of IgD- immature B cells to express the Fc epsilon R could not be entirely explained by their assignment to the Ly-1 lineage. Taken together, these results indicate that IL-4 can accelerate the developmental expression of the B cell Fc epsilon R, but only on those B cells that are mature enough to express IgD.  相似文献   

12.
Germinal center-B (GC-B) cells differentiate into memory B cells and plasma cells (PC) through interaction with T cells and follicular dendritic cells (FDC). Activated T cell and FDC play distinct roles in this process. The detailed kinetic experiments revealed that cytokines secreted by activated T cells determined the pathway of GC-B cell differentiation. IL-4 directs GC-B cells to differentiate into memory B cells, whereas IL-10 steers them into PC. FDC/HK cells do not direct either pathway, but provide signals for proliferation of GC-B cells. A novel FDC-signaling molecule 8D6 (FDC-SM-8D6) produced by FDC augments PC generation in the GC. FDC-SM-8D6-specific mAb blocked PC generation and IgG secretion but not memory B cell proliferation. COS cells expressing FDC-SM-8D6 enhanced GC-B cell proliferation and Ab secretion, which was blocked by mAb 8D6. In the cultures with B cell subsets, PC generation was inhibited by mAb 8D6 in the cultures with CD27(+) B cells but not in the culture with CD27(-) B cells, suggesting that CD27(+) PC precursor is the specific target of FDC-SM-8D6 stimulation.  相似文献   

13.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

14.
IgE induction from human cells has generally been considered to be T cell dependent and to require at least two signals: IL-4 stimulation and T cell/B cell interaction. In the present study we report a human system of T cell-independent IgE production from highly purified B cells. When human cells were co-stimulated with a mAb directed against CD40 (mAb G28-5), there was induction of IgE secretion from purified blood and tonsil B cells as well as unfractionated lymphocytes. Anti-CD40 alone failed to induce IgE from blood mononuclear cells or purified B cells. The effect of the combination of anti-CD40 and IL-4 on IgE production was very IgE isotype specific as IgG, IgM, and IgA were not increased. Furthermore, anti-CD40 with IL-5 or PWM did not co-stimulate IgG, IgM, or IgA and in fact strongly inhibited PWM-stimulated IgG, IgM and IgA production from blood or tonsil cells. IgE synthesis induced by anti-CD40 plus IL-4 was IFN-gamma independent as is the in vivo production of IgE in humans; the doses of IFN-gamma that profoundly suppressed IgG synthesis induced by IL-4, or IL-4 plus IL-6, had no inhibitory effect on anti-CD40-induced IgE production. Anti-CD23 and anti-IL-6 also could not block anti-CD40 plus IL-4-induced IgE production, but anti-IL-4 totally blocked their effect. IgE production via CD40 was not due to IL-5, IL-6 or nerve growth factor as none of these synergized with IL-4 to induce IgE synthesis by purified B cells. Finally, we observed that CD40 stimulation alone could enhance IgE production from in vivo-driven IgE-producing cells from patients with very high IgE levels; cells that did not increase IgE production in response to IL-4. Taken together, our data suggest that the signals delivered for IgE production by IL-4 and CD40 stimulation may mimic the pathway for IgE production seen in vivo in human allergic disease.  相似文献   

15.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

16.
Therapeutic efficacy of adoptive immunotherapy of malignancies is proportional to the number of effector T cells transferred. Traditionally, exogenous IL-2 treatment has been used to promote the survival and function of transferred cells. Recently, we described the therapeutic effects of in vivo ligation of the costimulatory receptor, OX-40R, on activated T cells during early tumor growth. In this study, we examined the effects of IL-2 and OX-40R mAb on adoptive immunotherapy of advanced tumors. For treatment of 10-day 3-methylcholanthrene 205 pulmonary metastases, systemic transfer of 50 x 10(6) activated tumor-draining lymph node T cells resulted in >99% reduction of metastatic nodules. With either IL-2 or OX-40R mAb conjunctional treatment, only 20 x 10(6) cells were required. Advanced 10-day 3-methylcholanthrene 205 intracranial tumors could be cured by the transfer of 15 x 10(6) L-selectin(low) T cells derived from draining lymph nodes. In this situation, IL-2 administration inhibited therapeutic effects of the transferred cells. By contrast, 5 x 10(6) T cells were sufficient to cure all mice if OX-40R mAb was administrated. Studies on trafficking of systemically transferred T cells revealed that IL-2, but not OX-40R mAb, impeded tumor infiltration by T cells. Tumor regression required participation of both CD4 and CD8 T cells. Because only CD4 T cells expressed OX-40R at cell transfer, direct CD4 T cell activation is possible. Alternatively, OX-40R might be up-regulated on transferred T cells at the tumor site, rendering them reactive to the mAb. Our study suggests OX-40R mAb to be a reagent of choice to augment T cell adoptive immunotherapy in clinical trials.  相似文献   

17.
In an effort to identify immunoregulatory molecules on dendritic cells (DC), we generated and screened for mAbs capable of modulating the T cell stimulatory function of DC. A particularly interesting mAb was mAb DF272. It recognizes monocyte-derived DC, but not blood monocytes or lymphocytes, and has profound immunomodulatory effects on DC. Treatment of DC with intact IgG or Fab of mAb DF272 enhanced their T cell stimulatory capacity. This effect on DC was accompanied by neither an up-regulation of costimulatory molecules such as B7.1 (CD80), B7.2 (CD86), and MHC class II molecules nor by an induction of cytokine production, including IL-1, TNF-alpha, IL-10, and IL-12. Moreover, the well-established inhibitory function of IL-10-treated DC could be reverted with mAb DF272. Even T cells, anergized because of stimulation with IL-10-treated DC, could be reactivated and induced to proliferate upon stimulation with mAb DF272-treated DC. Furthermore, mAb DF272-treated DC favored the induction of a type-1 cytokine response in T cells and inhibited IL-10 production. By using a retrovirus-based cDNA expression library generated from DC, we cloned and sequenced the mAb DF272-defined cell surface receptor and could demonstrate that it is identical with B7-H1 (programmed death-1 ligand), a recently identified new member of the B7 family of costimulatory molecules. Our results thus demonstrate that the mAb DF272-defined surface molecule B7-H1 represents a unique receptor structure on DC that might play a role in the induction and maintenance of T cell anergy.  相似文献   

18.
The Fas Ag is a newly defined cell-surface molecule that may mediate apoptosis. The antibody against Fas Ag can induce the apoptotic cell death in cell lines expressing this Ag. PBL subpopulations at various ages were here examined for Fas expression by two-or three-color flow-cytometric analyses using anti-Fas mAb. It was found that Fas Ag was appreciably detected on a proportion of T and B cells, whereas its expression was absent for NK cells. For CD4+ and CD8+ T cells, Fas Ag was expressed preferentially on CD45RO+ (memory or previously activated) populations, but not on CD45RO- naive ones. TCR-gamma/delta+ T cells, especially their CD45RO+ subsets, also expressed Fas Ag. Expectably, neonatal T cell subpopulations, most of which had the naive (CD45RO-) phenotype, expressed little Fas Ag. Fas-expressing B cells dominated in surface(s) IgD- populations, but neonatal B cells as well as adult sIgD+ B cells had little Fas Ag. The Fas Ag was inducible after in vitro mitogenic stimulation of naive T and B cells from neonatal blood. These observations suggested that expression of Fas Ag on T and B cells in the peripheral blood might reflect their in vivo Ag-activated status. In contrast to Fas-expressing cultured cell lines, however, viability of in vitro stimulated T and B cells as well as freshly isolated CD45RO+ T cells was not significantly changed after the treatment with anti-Fas mAb, indicating that additional cellular conditions to Fas expression might be required for anti-Fas-induced cell death.  相似文献   

19.
Recently we found that CXCL12/SDF-1 is a costimulator of peripheral CD4+ T cells. In this study, we report that CXCL12 alone induced expression of activation markers by peripheral CD4+ memory T cells and costimulated activation marker expression by anti-CD3 stimulated peripheral CD4+ naive and CD4+ memory T cells as well as by peripheral CD8+ T cells. The stimulation by CXCL12 was inhibited by Pertussis Toxin (PTX), but not by anti-CD25 mAb. CXCL12 also induced enhancement of IL-2 production and proliferation by anti-CD3 stimulated CD4+ memory T cells, but not by CD4+ naive T cells. PTX inhibited the enhancement of IL-2 production and proliferation, whereas anti-CD25 mAb inhibited proliferation, but not IL-2 production. Thus, CXCL12 upregulated T-cell activation, and a G-coupled protein mediated signaling pathway was necessary for stimulation of T cells by CXCL12.  相似文献   

20.
Recent studies have demonstrated that IL-1 and IL-6 are synergistic accessory signals for activation of T cells. In this study, highly purified human T cells were cultured with either a stimulating pair of anti-CD2 mAb or with immobilized anti-CD3 mAb. Monocytes, a cellfree monocyte culture supernatant or IL-1 were required for anti-CD2-stimulated T cell proliferation, and they each strongly enhanced anti-CD3-induced T cell growth. IL-6 was synergistic with IL-1 as a helper factor for T cell growth after activation via CD2, but we could not demonstrate any effect of IL-6 in the CD3 pathway. The mechanism of the synergistic helper activity of IL-1 and IL-6 on T cell activation in the CD2 pathway was further examined. IL-1 (but not IL-6) was required for induction of IL-2 production. Both IL-1 and IL-6 enhanced IL-2R (p55) expression and the proliferative response to IL-2. T cell proliferation after stimulation with anti-CD2 and IL-1 or IL-1/IL-6 proceeded through an autocrine IL-2-dependent pathway. Moreover we found that, in the absence of IL-1, IL-6 still supported a transient and limited proliferation of anti-CD2- (but not of anti-CD3-) stimulated T cells, which apparently was independent of the autocrine growth factors IL-2 or IL-4. Our data suggest that IL-6 is important as an accessory signal for T cell growth in the CD2 pathway of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号