首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiobacillus ferrooxidans MAL4-1, an isolate from Malanjkhand copper mines, India, was adapted to grow in the presence of high concentration (30 gL−1) of Cu2+, resulting in a 15-fold increase in its tolerance to Cu2+. While wild-type T. ferrooxidans MAL4-1 contained multiple plasmids, cultures adapted to Cu2+ concentrations of 20 gL−1 or more showed a drastic reduction in the copy number of the plasmids. The reduction for three of the plasmids was estimated to be over 50-fold. Examination of the plasmid profiles of the strains adapted to high concentration of SO4 2− anion (as Na2SO4 or ZnSO4) indicated that the reduction in plasmid copy number is not owing to SO4 2− anion, but is specific for Cu2+. The effect of mercury on the plasmids was similar to that of copper. Deadaptation of the Cu2+- or Hg2+-adapted T. ferrooxidans resulted in restoration of the plasmids to the original level within the first passage. The fact that the plasmid copy number, in general, is drastically reduced in Cu2+-adapted T. ferrooxidans suggests that resistance to copper is chromosome mediated. This is the first report of a selective negative influence of copper ions on the copy number of plasmids in T. ferrooxidans.  相似文献   

2.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

3.
Abstract

Laboratory simulations have helped resolve several problems concerning the role of bacteria in producing acidic drainage from active and abandoned coal mines. It is well established that the bacterium Thiobacillus ferrooxidans oxidizes pyrite in synthetic liquid media and in flooded or agitated experimental simulations of coal mine environments. However, many geologists remain skeptical regarding the role of T. ferrooxidans in producing acidity below a near‐surface belt of soil water. We have demonstrated that T. ferrooxidans is capable of colonizing and acidifying a near‐neutral pH environment of crushed coal or overburden, without prior establishment of a pH‐dependent succession of bacteria. We have suggested that T. ferrooxidans may accomplish this by direct oxidation of pyrite. We have also shown that T. ferrooxidans catalyzes pyrite oxidation in the intermediate belt of the zone of aeration, although only for a limited period of time after rainfall infiltration. T. ferrooxidans was not found to be significant in the simulated zone of groundwater saturation.  相似文献   

4.
Drainages from high‐sulfide tailings near abandoned lode deposits in Alaska, U.S.A., and Yukon, Canada, were found to be acidic, to contain large numbers of Thiobacillus ferrooxidans, and to have high concentrations of dissolved arsenic. Drainages from active placer gold mines are not acidic, but T. ferrooxidans and concentrations of dissolved arsenic exceeding 10 μg/L are found in some streams affected by placer mine drainage. Placer mine material containing low amounts of sulfides (326 (μg/g) and moderately high amounts of arsenic (700 μg/g) was leached with growing cultures of T. ferrooxidans, T. ferrooxidans‐spent filtrate, and acid ferric sulfate. The results showed that while more arsenic was released from this material by growing cultures of T. ferrooxidans than by abiotic controls, acid ferric sulfate released much more arsenic than did either growing cultures of T. ferrooxidans or spent culture filtrate containing oxidized iron. Cation exchange chromatography showed that oxidized iron from T. ferrooxidans culture filtrate is chemically less reactive than the iron in aqueous solutions of ferric sulfate salt. These results indicate that arsenic release from both high‐ and low‐sulfide mine wastes is enhanced biologically, but that rates and amounts of arsenic release are primarily controlled by iron species.  相似文献   

5.
Copper dissolution from a sulfide ore (with covellite as the main copper phase) was investigated in cultures of Thiobacillus ferrooxidans or Thiobacillus thiooxidans and in abiotic controls. In unsupplemented media, T. ferrooxidans was more efficient than T. thiooxidans. In the presence of ferric iron, the dissolution of covellite was not significantly different in cultures inoculated with T. ferrooxidans or T. thiooxidans. However, the most extraction was found in T. thiooxidans cultures supplemented with ferrous sulfate. The first results were explained by the mechanism proposed by Schippers and Sand (Appl Envir Microbiol 65:319-321, 1999), which involves polysulfides and sulfur as intermediates. This mechanism was extended to explain the behavior of T. thiooxidans culture supplemented with ferrous iron.  相似文献   

6.
An electrolytic cell was designed and constructed for the formentation of T. ferroxidans using Fe2+ as the energy-supplying substrate. The Fe3+ produced by T. ferrooxidans by fermentation is continuously reduced to Fe 2+ in the electrolytic cell. A suitable version of the electrolytic cell permitted the elimination of most inorganic solid matter (precipitate) from the fermentation process. The fermentation of T. ferrooxidans was carried out with and without the electrolytic cell. Fermentation with the cell yielded significant rises both in the maximum obtainable growth rate and the biomass concentration. The experimental of data are discussed and the theoretical substrate consumption coefficient was calculated for Fe2+ as a function of the pH and the coefficient was compared with the experimental results.  相似文献   

7.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 μM and 5 μM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 μM, and 70% by 10 μM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

8.
Thiobacillus acidophilus andT. ferrooxidans were separated by centrifugation on the basis of their cell density in Renografin gradients. For both species, growth history was the largest factor influencing cell density. Density was greatest forT. acidophilus andT. ferrooxidans grown with tetrathionate, followed byT. acidophilus grown with glucose.T. ferrooxidans grown with ferrous sulfate was the least dense.T. acidophilus was isolated from iron-grownT. ferrooxidans by separation in a Renografin gradient. Plasmid patterns ofT. acidophilus andT. ferrooxidans were used to confirm the separation of the two species in mixed gradients.  相似文献   

9.
Summary A method for enumeration of viable numbers of Thiobacillus ferrooxidans using membrane filters on ferrous-iron agar is presented. Factors affecting colony production were the concentration and brand of agar, pH of the medium, and type of membrane filter. The results suggest that inhibition of T. ferrooxidans by agar is a result of the acid hydrolysis of agar, the main product of which is d-galactose. Colony development was suppressed by aged medium, by acid-hydrolysed agar and by 0.1% galactose. Sartorius and Millipore membrane filters were suitable for the experiments, whereas Oxoid MF-50 membranes virtually suppressed the production of colonies. The method was employed to follow growth of T. ferrooxidans in pH 1.3 medium. The viable cell numbers were correlated with 14CO2-fixation and ferrous iron oxidation. Generation time was 6 h 22 min with a yield of 2.2×1012 organisms/g atom Fe2+ oxidized. Growth of T. neapolitanus on thiosulphate medium was not affected by agar-type or membrane filters and yield of the organism was 1.5×1013 organisms/g molecule Na2S2O3 oxidized.  相似文献   

10.
Two strains of Thiobacillus, T. ferrooxidans and T. thiooxidans, have been isolated from a bacterial inoculum cultivated during a one-year period in a 1001 continuous laboratory pilot for treatment of an arsenopyrite/pyrite concentrate. The optimum pH for the growth of both strains has been found to be between 1.7 and 2.5. Because of the high metal toxicity in bioleach pulps, the tolerance of T. ferrooxidans and T. thiooxidans with respect to iron and arsenic has been studied. The growth of both strains is inhibited with 10 g/l of ferric ion, 5 g/l of arsenite and 40 g/l of arsenate. 20 g/l of ferrous iron is toxic to T. ferrooxidans but 30 g/l is necessary to impede the growth of T. thiooxidans.  相似文献   

11.
Ferrous ion oxidation byThiobacillus ferrooxidans was completely inhibited by 10 mM each of thiosulfate, sulfite, metabisulfite, bisulfite, and tetrathionate. The inhibition was enhanced in a low pH medium (pH 1.5 versus pH 2.5). Oxygen uptake measurements with Fe2+ as the electron donor confirmed the toxicity of thiosulfate, but also indicated its dependency on the concentration of Fe2+. Cytochrome spectra of intact cells ofT. ferrooxidans showed that metabisulfite, and thiosulfate to a lesser extent, directly reduced electron transport components, in contrast to no direct reduction of cytochromes by tetrathionate and sulfite.  相似文献   

12.
The purpose of this investigation was to determine the effect of Thiobacillus acidophilus on the leaching of a low-grade Cu-Ni sulfide ore by Thiobacillus ferrooxidans. A sample of low-grade Cu-Ni sulfide ore containing 0.36% Cu, 0.48% Ni, and 7.87% Fe was pulverized and initially leached for a 21-day period using two different pure cultures of T. ferrooxidans, an environmental strain (F2) and a strain from the American Type Culture Collection (ATCC 23270). Samples of the ore slurries were drawn and the pH was monitored over the course of the leaching period. The concentrations of Cu and Ni leached by each strain were determined and compared. No significant differences were observed in the concentrations of Cu and Ni leached by the two pure cultures of T. ferrooxidans. Subsequently, the ore was leached with mixed cultures of T. ferrooxidans and T. acidophilus to determine the effect of the latter on the concentrations of Cu and Ni leached from the ore. The environmental strain F2 of T. ferrooxidans was used in combination with both a type strain (ATCC 27807) and an environmental strain (64) of T. acidophilus. After 21 days, the mixed cultures of T. ferrooxidans and T. acidophilus leached significantly greater amounts of copper than the pure strain alone, but no such difference was observed for the leaching of nickel.  相似文献   

13.
Hydrogenase of Thiobacillus ferrooxidans ATCC 19859 was purified from cells grown lithoautotrophically with 80% hydrogen, 8.6% carbon dioxide, and 11.4% air. Hydrogenase was located in the 140,000 ×g supernatant in cell-free extracts. The enzyme was purified 7.3-fold after chromatography on Procion Red and Q-Sepharose with a yield of 19%, resulting in an 85% pure preparation with a specific activity of 6.0 U (mg protein)–1. With native PAGE, a mol. mass of 100 and 200 kDa was determined. With SDS-PAGE, two subunits of 64 (HoxG) and of 34 kDa (HoxK) were observed. Hydrogenase reacted with methylene blue and other artificial electron acceptors, but not with NAD. The optimum of enzyme activity was at pH 9 and at 49° C. Hydrogenase contained 0.72 mol nickel and 6.02 mol iron per mol enzyme. The relationship of the T. ferrooxidans hydrogenase to other proteins was examined. A 9.5-kb EcoRI fragment of T. ferrooxidans ATCC 19859 hybridized with a 2.2-kb XhoI fragment from Alcaligenes eutrophus encoding the membrane-bound hydrogenase. Antibodies against this enzyme did not react with the T. ferrooxidans hydrogenase in Western blot analysis. The N-terminal amino acid sequence (40 amino acids) of HoxK was 46% identical to that of the hydrogen sensor HupU of Bradyrhizobium japonicum and 39% identical to that of the HupS subunit of the Desulfovibrio baculatus hydrogenase. The N-terminal sequence of 20 amino acids of HoxG of T. ferrooxidans was 83.3% identical to that of the 60-kDa subunit. HupL, of the hydrogenase of Anabaena sp. Sequences of ten internal peptides of HoxG were 50–100% identical to the respective sequences of HupL of the Anabaena sp. hydrogenase. Received: 17 November 1995 / Accepted: 2 February 1996  相似文献   

14.
Summary Effects of silver, mercury, cobalt and copper on the growth of, and iron oxidation by, fourT. ferrooxidans isolates were investigated. The isolates showed different patterns of resistance to the metals and growth was more affected than the iron oxidation activity.  相似文献   

15.
Sulfite ion (HSO3 -) is one of the products when elemental sulfur is oxidized by the hydrogen sulfide:ferric ion oxidoreductase of Thiobacillus ferrooxidans AP19-3. Under the conditions in which HSO3 - is accumulated in the cells, the iron oxidase of this bacterium was strongly inhibited by HSO3 -. Since cytochrome c oxidase is one of the most important components of the iron oxidase enzyme system in T. ferrooxidans, effects of HSO3 - on cytochrome c oxidase activity were studied with the plasma membranes of HSO3 --resistant and -sensitive strains of T. ferrooxidans, OK1-50 and AP19-3. The enzyme activity of AP19-3 compared with OK1-50 was strongly inhibited by HSO3 -. To investigate the inhibition mechanism of HSO3 - in T. ferrooxidans, cytochrome c oxidases were purified from both strains to an electrophoretically homogeneous state. Cytochrome c oxidase activity of a purified OK1-50 enzyme was not inhibited by 5 mM HSO3 -. In contrast, the same concentration of HSO3 - inhibited the enzyme activity of AP19-3 50%, indicating that the cytochrome c oxidase of OK1-50 was more resistant to HSO3 - than that of AP19-3. Cytochrome c oxidases purified from both strains were composed of three subunits. However, the molecular weight of the largest subunit differed between OK1-50 and AP19-3. Apparent molecular weights of the three subunits of cytochrome c oxidases were 53,000, 24,000, and 19,000 for strain AP19-3 and 55,000, 24,000, and 19,000 for strain OK1-50, respectively.  相似文献   

16.

The widely distributed Acidithiobacillus ferrooxidans (A. ferrooxidans) lives in extremely acidic conditions by fixing CO2 and nitrogen, and by obtaining energy from Fe2+ oxidation with either downhill or uphill electron transfer pathway and from reduced sulfur oxidation. A. ferrooxidans exists as different genomovars and its genome size is 2.89–4.18 Mb. The chemotactic movement of A. ferrooxidans is regulated by quorum sensing. A. ferrooxidans shows weak magnetotaxis due to formation of 15–70 nm magnetite magnetosomes with surface functional groups. The room- and low-temperature magnetic features of A. ferrooxidans are different from other magnetotactic bacteria. A. ferrooxidans has potential for removing sulfur from solids and gases, metals recycling from metal-bearing ores, electric wastes and sludge, biochemical production synthesizing, and metal workpiece machining.

  相似文献   

17.
The merC gene from Acidithiobacillus ferrooxidans functions as a mercury uptake pump. MerC protein localizes in the cytoplasmic membrane of plant cells. When Arabidopsis thaliana and tobacco plants were transformed with the merC gene under the control of the Cauliflower mosaic virus 35S promoter, the resulting overexpression of merC rendered the host plants hypersensitive to Hg2+ and they accumulated approximately twice as much Hg2+ ion as the wild type plants. Thus, bacterial mercuric ion transporters such as MerC may be useful molecular tools for producing transgenic plants that hyperaccumulate Hg2+ ion.  相似文献   

18.
The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNAGln amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNAGln to Gln-tRNAGln and Asp-tRNAAsn to Asn-tRNAAsn. Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.  相似文献   

19.
An enzyme-linked immunofiltration assay (ELIFA) has been developed in order to estimate directly and specifically Thiobacillus ferrooxidans attachment on sulfide minerals. This method derives from the enzyme-linked immunosorbent assay but is performed on filtration membranes which allow the retention of mineral particles for a subsequent immunoenzymatic reaction in microtiter plates. The polyclonal antiserum used in this study was raised against T. ferrooxidans DSM 583 and recognized cell surface antigens present on bacteria belonging to the genus Thiobacillus. This antiserum and the ELIFA allowed the direct quantification of attached bacteria with high sensitivity (104 bacteria were detected per well of the microtiter plate). The mean value of bacterial attachment has been estimated to be about 105 bacteria mg−1 of pyrite at a particle size of 56 to 65 μm. The geometric coverage ratio of pyrite by T. ferrooxidans ranged from 0.25 to 2.25%. This suggests an attachment of T. ferrooxidans on the pyrite surface to well-defined limited sites with specific electrochemical or surface properties. ELIFA was shown to be compatible with the measurement of variable levels of adhesion. Therefore, this method may be used to establish adhesion isotherms of T. ferrooxidans on various sulfide minerals exhibiting different physicochemical properties in order to understand the mechanisms of bacterial interaction with mineral surfaces.  相似文献   

20.
The cell envelope of a Sulfolobus-like microorganism has an arrayed hexagonal subunit structure, a double-layered cytoplasmic membrane, and a hollow periplasmic space between the plasma membrane and the outermost arrayed layer. A dense peptidoglycan layer outside the plasma membrane found in the case of Thiobacillus ferrooxidans was not seen. The cell envelope of a thermophile isolated from a leaching environment has a well-defined envelope with two well-stained layers distinclty seen. While the peptidoglycan layer is also not seen in this thermophile, a long flagellum similar to that in the case of T. ferrooxidans is present. The presence of pili in the Sulfolobus-like organism and its arrayed subunit cell envelope structure could account for the organism's selective attachment to sulfide phases in the leaching of low-grade ores. The observations of a well-defined cell envelope in the two thermophiles is consistent with the structure-function relationship previously established for T. ferrooxidans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号