首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Sequence tagged sites generated for 60 NotI clones (NotI-STSs) from human chromosome 3-specific NotI-jumping and NotI-linking libraries were physically located using PCR screening of a radiation hybrid (RH) GeneBridge4 panel. The NotI map of chromosome 3 was generated using these RH-mapping data and those obtained earlier by FISH and sequencing of the corresponding NotI clones. The sequences of the NotI clones showed significant homologies with known genes and/or ESTs for 58 NotI-STSs (97%). These 58 NotI clones displayed 91-100% identity to 54 genes and 23 cDNA/EST clones. One known and two hypothetical protein-coding genes were localized for the first time and nine cDNA clones (unknown genes) were also carefully mapped only in this work. Three newly mapped genes are histone gene H1X (NR1-BK20C) and genes for hypothetical proteins THC1032178 and THC1024604 (NL1-243).  相似文献   

2.
A new comparative genome hybridization technology using NotI microarrays is described (Karolinska Institute International Patent WO02/086163). The method is based on comparative genome hybridization of NotI-enriched probes from tumor and normal genomic DNA with radically new NotI microarrays. A total of 181 NotI-binding loci of human chromosome 3 were assayed in 200 human malignant tissue samples from various organs: kidney, lung, breast, ovary, cervix, and prostate. The most significant portion (above 30%) of aberrations (deletions and methylation) were detected in NotI sites located in the MINT24, BHLHB2, RPL15, RARbeta1, ITGA9, RBSP3, VHL, and ZIC4 genes. This indicates that they may be associated with cancer development. Methylation of these genomic loci was confirmed by methylation-specific PCR and bisulfite sequencing. The results confirm that the proposed method can contribute to cancer genomics.  相似文献   

3.
Chromosome 3 specific NotI microarrays containing 180 NotI linking clones associated with 188 genes were hybridized to NotI representation probes prepared using matched tumor/normal samples from major epithelial cancers: breast (47 pairs), lung (40 pairs) cervical (43 pairs), kidney (34 pairs of clear cell renal cell carcinoma), colon (24 pairs), ovarian (25 pairs) and prostate (18 pairs). In all tested primary tumors (compared to normal controls) methylation and/or deletions was found. For the first time we showed that the gene LRRC3B was frequently methylated and/or deleted in breast carcinoma - 32% of samples, cervical - 35%, lung - 40%, renal - 35%, ovarian - 28%, colon - 33% and prostate cancer - 44%. To check these results bisulfite sequencing using cloned PCR products with representative two breast, one cervical, two renal, two ovarian and two colon cancer samples was performed. In all cases methylation was confirmed. Expression analysis using RT-qPCR showed that LRRC3B is strongly down-regulated at the latest stages of RCC and ovarian cancers. In addition we showed that LRRC3B exhibit strong cell growth inhibiting activity (more than 95%) in colony formation experiments in vitro in KRC/Y renal cell carcinoma line. All these data suggest that LRRC3B gene could be involved in the process of carcinogenesis as a tumor suppressor gene.  相似文献   

4.
A NotI-linking library was constructed from a radiation hybrid containing fragments of human chromosome 16. The clones were mapped on a panel of somatic cell hybrids, and 10 different NotI site-containing clones were localized close to and between genetic markers flanking the PKD1 locus. With pulsed-field gel analysis the clones were shown to be distributed over four adjacent ClaI fragments covering 1,200 kb.  相似文献   

5.
We have developed a new type of microarray, restriction site tagged (RST), for example NotI, microarrays. In this approach only sequences surrounding specific restriction sites (i.e. NotI linking clones) were used for generating microarrays. DNA was labeled using a new procedure, NotI representation, where only sequences surrounding NotI sites were labeled. Due to these modifications, the sensitivity of RST microarrays increases several hundred-fold compared to that of ordinary genomic microarrays. In a pilot experiment we have produced NotI microarrays from Gram-positive and Gram-negative bacteria and have shown that even closely related Escherichia coli strains can be easily discriminated using this technique. For example, two E.coli strains, K12 and R2, differ by less than 0.1% in their 16S rRNA sequences and thus the 16S rRNA sequence would not easily discriminate between these strains. However, these strains showed distinctly different hybridization patterns with NotI microarrays. The same technique can be adapted to other restriction enzymes as well. This type of microarray opens the possibility not only for studies of the normal flora of the gut but also for any problem where quantitative and qualitative analysis of microbial (or large viral) genomes is needed.  相似文献   

6.
Radiation hybrid mapping (RH mapping) is considered as one of the main methods of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localise nucleotide sequences adjacent to NotI sites of human chromosome 3 with the aim to integrate contig map of NotI clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer were localised. It was demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of oncogenesis. RH mapping can be considered as one of the most perspective applications of the modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level.  相似文献   

7.
Toward a long-range map of human chromosomal band 22q11   总被引:3,自引:0,他引:3  
Human chromosome band 22q11 is involved in numerous chromosomal rearrangements. A long-range molecular map of this region would allow the more precise localization of the various breakpoints of these rearrangements. Toward this goal we have constructed a genomic DNA library that allows the isolation of DNA clones that are directly adjacent to NotI sites. NotI was chosen because it is a restriction enzyme that digests infrequently in the human genome. The genomic DNA used in this library was from a human/hamster hybrid cell line that has a chromosome 22 as the only visible human chromosome. Two clones were isolated and mapped to different regions of 22q11 using a somatic cell hybrid mapping panel. A long-range restriction map flanking the NotI site of each of these two clones was produced using NotI and other infrequently cutting enzymes. Both NotI sites analyzed were located in HTF islands, regions often associated with the 5' end of genes. Thus, the NotI map of 22q11 may also aid in the cloning of undiscovered genes, giving a starting point for the study of duplication/deficiency syndromes of the region.  相似文献   

8.
A novel procedure for construction of jumping libraries is described. The essential features of this procedure are as follows: (1) two diphasmid vectors (lambda SK17 and lambda SK22) are simultaneously used in the library construction to improve representativity, (2) a partial filling-in reaction is used to eliminate cloning of artifactual jumping clones and to obviate the need for a selectable marker. The procedure has been used to construct a representative human NotI jumping library (220,000 independent recombinant clones) from the lymphoblastoid cell line CBMI-Ral-STO, which features a low level of methylation of its resident EBV genomes. A human chromosome 3-specific NotI jumping library (500,000 independent recombinant clones) from the human chromosome 3 x mouse hybrid cell line MCH 903.1 has also been constructed. Of these recombinant clones 50-80% represent jumps to the neighboring cleavable NotI site. With our previously published method for construction of linking libraries this procedure makes a new genome mapping strategy feasible. This strategy includes the determination of tagging sequences adjacent to NotI sites in random linking and jumping clones. Special features of the lambda SK17 and lambda SK22 vectors facilitate such sequencing. The STS (sequence tagged site) information obtained can be assembled by computer into a map representing the linear order of the NotI sites for a chromosome or for the entire genome. The computerized mapping data can be used to retrieve clones near a region of interest. The corresponding clones can be obtained from the panel of original clones, or necessary probes can be made from genomic DNA by PCR.  相似文献   

9.
NotI genomic cleavage map of Escherichia coli K-12 strain MG1655.   总被引:4,自引:2,他引:2       下载免费PDF全文
Several approaches were used to construct a complete NotI restriction enzyme cleavage map of the genome of Escherichia coli MG1655. The approaches included use of transposable element insertions that created auxotrophic mutations and introduced a NotI site into the genome, hybridization of NotI fragments to the ordered lambda library constructed by Kohara et al. (BioTechniques 10:474-477, 1991), Southern blotting of NotI digests with cloned genes as probes, and analysis of the known E. coli DNA sequence for NotI sites. In all, 22 NotI cleavage sites were mapped along with 26 transposon insertions. These sites were localized to clones in the lambda library and, when possible, sequenced genes. The map was compared with that of strain EMG2, a wild-type E. coli K-12 strain, and several differences were found, including a region of about 600 kb with an altered restriction pattern and an additional fragment in MG1655. Comparison of MG1655 with other strains revealed minor differences but indicated that this map was representative of that for many commonly used E. coli K-12 strains.  相似文献   

10.
Effective procedures have been developed for constructing NotI linking libraries starting from chromosome-specific genomic libraries. Fifteen different single copy and two rDNA NotI linking clones from human chromosome 21 were identified in two libraries. Their chromosomal origin was confirmed, and regional location established using hybrid cell panels. Hybridization experiments with these probes revealed pairs of genomic NotI fragments, each ranging in size from less than 0.05 to 4.0 Mb. Many fragments displayed cell type variation. The total size of the NotI fragments detected in a human fibroblast cell line (GM6167) and mouse hybrid cell containing chromosome 21 as its only human component (WAV17) were approximately 32 and 34 Mb, respectively. If these fragments were all non-overlapping, this would correspond to about 70% of the 50-Mb content estimated for the whole chromosome. The linking clones will be enormously useful in the subsequent construction of a NotI restriction map of this chromosome. Characterization of these clones indicates the presence of numerous additional sites for other enzymes that recognize sequences containing CpG. Thus most NotI linking clones appear to derive from CpG islands and probably identify the 5' end of genes.  相似文献   

11.
Aberrant promoter methylation and associated chromatin changes are primarily studied in human malignancies. Thus far, mouse models for human cancer have been rarely utilized to study the role of DNA methylation in tumor onset and progression. It would be advantageous to use mouse tumor models to a greater extent to study the role and mechanism of DNA methylation in cancer because mouse models allow manipulation of the genome, study of samples/populations with a homogeneous genetic background, the possibility of modulating gene expression in vivo, the statistical power of using large numbers of tumor samples, access to various tumor stages, and the possibility of preclinical trials. Therefore, it is likely that the mouse will emerge as an increasingly utilized model to study DNA methylation in cancer. To foster the use of mouse models, we developed an arrayed mouse NotI-EcoRV genomic library, with clones from three commonly used mouse strains (129SvIMJ, FVB/NJ, and C57BL/6J). A total of 23,040 clones representing an estimated three- to fourfold coverage of the mouse genome were arrayed in 60 x 384-well plates. We developed restriction landmark genomic scanning (RLGS) mixing gels with 32 plates to enable the cloning of methylated sequences from RLGS profiles run with NotI-EcoRV-HinfI. RLGS was used to study aberrant methylation in two mouse models that overexpressed IL-15 or c-Myc and developed either T/NK-cell leukemia or T-cell lymphomas, respectively. Careful analysis of 198 sequences showed that 188 (94.9%) identified CpG-island sequences, 132 sequences (66.7%) had homology to the 5' regions of known genes or mRNAs, and all 132 NotI-EcoRV clones were located at the same CpG islands with the predicted promoter sequences. We have also developed a modified pGL3-based luciferase vector that now contains the NotI, AscI, and EcoRV restriction sites and allows the rapid cloning of NotI-EcoRV library fragments in both orientations. Luciferase assays using NotI-EcoRV clones confirmed that the library is enriched for promoter sequences. Thus, this library will support future genetic and epigenetic studies in mouse models.  相似文献   

12.
A somatic cell hybrid mapping panel that defines seven regions of the long arm and one region of the short arm of human chromosome 6 has been developed. Utilizing this panel, 17 NotI boundary clones from a NotI linking library were regionally assigned to the long arm of chromosome 6. The majority of these clones (11) were found to localize within band regions 6q24-q27. The nonuniform distribution of NotI sites may indicate a cluster of HTF islands and likely represents a coincidence of coding sequences in this region of chromosome 6. Cross-hybridization of these linking clones to DNA from other species (zoo blots) provides further evidence for transcribed sequences in 7 of the NotI clones. These NotI clones were also used to identify corresponding NotI fragments using pulsed-field gel electrophoresis, facilitating further physical mapping of this region. Finally, regional assignment of five polymorphic probes to the long arm of chromosome 6 is also presented. These hybrids and probes should facilitate the construction of a physical and genetic linkage map to assist in the identification of disease loci along chromosome 6.  相似文献   

13.
Leptospira interrogans is a pathogenic bacterium with a low G+C content (34 to 39%). The restriction enzymes NotI, AscI, and SrfI cut the chromosome of L. interrogans serovar icterohaemorrhagiae into 13, 3, and 5 fragments separable by one- and two-dimensional pulsed-field gel electrophoresis (PFGE). The genome is composed of a circular 4.6-Mbp chromosome and a 0.35-Mbp extrachromosomal element. A physical map of the chromosome was constructed for NotI, AscI, and SrfI by using single and double digests, or partial NotI digests obtained at random or by cross-protection of NotI sites by FnuDII methylase, and linking clones. rRNA genes were found to be widely scattered on the chromosome.  相似文献   

14.
We have developed a novel method for constructing NotI linking and boundary libraries using a modified "solid-supported ligation primer" (restriction trapper). The restriction trapper could be used to purify the DNA fragments with a specific restriction enzyme cutting site(s) at their ends. The method uses a ligation and recutting reaction with double-stranded DNA ends of a hairpin-shaped oligolinker which is connected covalently to the surface of the latex beads. Selectivity is based on the specificity of the restriction enzyme for its recognition site, resulting in efficient purification. We applied this technique to the construction of high-quality NotI linking and NotI boundary libraries, which contain almost all the NotI sites of the genome and, in addition, are free of illegitimately ligated clones.  相似文献   

15.
We describe the construction and characterization of methylation-resistant sequence-tagged NotI linking clones specific for the X chromosome, referred to as NotI-BsuE linking clones. The approach consists of methylating the X-chromosome-specific cloned DNA with BsuE methylase (M. BsuE), an enzyme that methylates the first C residue in the CGCG sequence, followed by selection of the methylation-resistant NotI sites by insertion of a kanamycin-resistance gene in the clones cleavable by NotI. The frequent occurrence of NotI sites in CpG islands is expected to cause methylation of a large number of NotI sites with BsuE methylase, thereby rendering them resistant to NotI cleavage. Thus, the combination of M. BsuE and NotI yields less frequent cutting than the NotI alone. We have isolated, partially sequenced, and characterized 113 NotI-BsuE linking clones, and mapped 50 clones to various regions along the chromosome.  相似文献   

16.
《Epigenetics》2013,8(2):308-317
Cervical cancer is a major health concern among women in Latin America due to its high incidence and mortality. Therefore, the discovery of molecular markers for cervical cancer screening and triage is imperative. The aim of this study was to use a genome wide DNA methylation approach to identify novel methylation biomarkers in cervical cancer. DNA from normal cervical mucosa and cervical cancer tissue samples from Chile was enriched with Methylated DNA Immunoprecipitation (MeDIP), hybridized to oligonucleotide methylation microarrays and analyzed with a stringent bioinformatics pipeline to identify differentially methylated regions (DMRs) as candidate biomarkers. Quantitative Methylation Specific PCR (qMSP) was used to study promoter methylation of candidate DMRs in clinical samples from two independent cohorts. HPV detection and genotyping were performed by Reverse Line Blot analysis. Bioinformatics analysis revealed GGTLA4, FKBP6, ZNF516, SAP130, and INTS1 to be differentially methylated in cancer and normal tissues in the Discovery cohort. In the Validation cohort FKBP6 promoter methylation had 73% sensitivity and 80% specificity (AUC = 0.80). ZNF516 promoter methylation was the best biomarker, with both sensitivity and specificity of 90% (AUC = 0.92), results subsequently corroborated in a Prevalence cohort. Together, ZNF516 and FKBP6 exhibited a sensitivity of 84% and specificity of 81%, when considering both cohorts. Our genome wide DNA methylation assessment approach (MeDIP-chip) successfully identified novel biomarkers that differentiate between cervical cancer and normal samples, after adjusting for age and HPV status. These biomarkers need to be further explored in case-control and prospective cohorts to validate them as cervical cancer biomarkers.  相似文献   

17.
Cervical cancer is a major health concern among women in Latin America due to its high incidence and mortality. Therefore, the discovery of molecular markers for cervical cancer screening and triage is imperative. The aim of this study was to use a genome wide DNA methylation approach to identify novel methylation biomarkers in cervical cancer. DNA from normal cervical mucosa and cervical cancer tissue samples from Chile was enriched with Methylated DNA Immunoprecipitation (MeDIP), hybridized to oligonucleotide methylation microarrays and analyzed with a stringent bioinformatics pipeline to identify differentially methylated regions (DMRs) as candidate biomarkers. Quantitative Methylation Specific PCR (qMSP) was used to study promoter methylation of candidate DMRs in clinical samples from two independent cohorts. HPV detection and genotyping were performed by Reverse Line Blot analysis. Bioinformatics analysis revealed GGTLA4, FKBP6, ZNF516, SAP130, and INTS1 to be differentially methylated in cancer and normal tissues in the Discovery cohort. In the Validation cohort FKBP6 promoter methylation had 73% sensitivity and 80% specificity (AUC = 0.80). ZNF516 promoter methylation was the best biomarker, with both sensitivity and specificity of 90% (AUC = 0.92), results subsequently corroborated in a Prevalence cohort. Together, ZNF516 and FKBP6 exhibited a sensitivity of 84% and specificity of 81%, when considering both cohorts. Our genome wide DNA methylation assessment approach (MeDIP-chip) successfully identified novel biomarkers that differentiate between cervical cancer and normal samples, after adjusting for age and HPV status. These biomarkers need to be further explored in case-control and prospective cohorts to validate them as cervical cancer biomarkers.  相似文献   

18.
19.
We studied the expression profiles of various stages of colorectal tumors (adenoma (AD), seven samples; carcinoma (CA), 16 samples) by using cDNA microarrays and developed ADMS (algorithm for diagnosing malignant state) method, selecting 335 clones characteristic of CA state. We, then, applied ADMS to 12 additional samples (five from primary lesions with metastasis and seven metastases); all 16 CAs and 12 metastatic tumors were diagnosed correctly as cancerous states. Although three of the seven ADs were diagnosed as "cancerous," the large size of two of these tumors suggested their potential malignancy. Our strategy for selecting clones characteristic of the malignant state is widely applicable to diagnosis and for predicting the stage of progression during multistep carcinogenesis. Of the 335 clones we selected, 135 were known genes. Included in the 135 genes were tumor suppressor and growth factor-related genes and were consistent with the literature. ADMS is a reliable means for identifying genes useful for the diagnosis of cancer.  相似文献   

20.
Listeria monocytogenes is a facultative intracellular pathogen responsible for both invasive and non-invasive food-borne illness in animals and humans. In this study, macrorestriction analysis following pulsed-field gel electrophoresis was used to show that Listeria monocytogenes serovar 1/2a strain EGD has a single chromosome containing eight NotI fragments of 1100, 850, 365, 320, 275, 40, 30 and 20 kb in size and 11 AscI fragments of 860, 470, 410, 360, 320, 250, 110, 80, 50, 30 and 20 kb. The total genome therefore comprises 3000 +/- 50 kb. The creation of a physical and genetic map of the Listeria genome was achieved by generating NotI linking clones and their use in subsequent hybridisation analysis. Using isogenic mutants harbouring additional artificial NotI restriction sites, we were able to precisely map the positions of all currently known virulence genes on the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号