首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Germination of Alaska pea seeds is inhibited by –0.3 MPapolyethylene glycol but upon subsequent transfer to water, germinationis completed rapidly and radicle emergence occurs more quicklythan in water-imbibed seeds. Protein synthesis is reduced inthe axes of seeds imbibed on PEG but increases upon their returnto water, though not to the level exhibited by axes germinatedon water. Mobilization of proteins in the axes is retarded bytheir failure to complete germination on PEG, although somedoes occur. The quantitative reduction in protein synthesisresulting from incubation in osmoticum is not accompanied bymarked qualitative changes. The block to germination is notobviously associated with a restriction in synthesis of anyparticular protein or set of proteins; conversely, no ‘water-stress’proteins are synthesized in the presence of PEG. The synthesisof growth-specific proteins is prevented by PEG, but these increaseupon relief from the osmoconditioning treatments. These observationsdispute earlier claims for accelerated protein synthesis resultingfrom PEG treatments. Key words: Osmotic priming, Pisum sativum, germination, protein synthesis  相似文献   

3.
Marked differences were found among 28 finger millet genotypes(Eleusine coracana Gaertn.) in acquired tolerance to osmoticstress as assessed by the recovery of root growth from severestress [-1·2 MPa polyethylene glycol, (PEG) or 400 mMNaCl]. However, these differences in tolerance were observedonly when the seedlings were subjected to a preceding mild inductionstress (-0·6 MPa PEG or 200 mM NaCl). In two contrastinggenotypes, synthesis of stress-induced proteins was studied.Proteins with apparent molecular weight of 70-72, 52, 37, 34and 23 kDa were synthesized in the highly responsive genotype(GE 415) and poorly responsive (VL 481) genotype following amild induction stress (200 mM NaCl). However, GE-415 synthesizeda 54 kDa protein that was not observed in VL-481. Addition ofabscisic acid (ABA) to the induction medium containing 200 mMNaCl enhanced the acquired tolerance of finger millet seedlingsover those without ABA in association with the appearance ofseveral ABA-responsive proteins. GE-415 required much less ABAthan VL-481 to obtain the same response. With 10 µM ABA+ 200 mM, A NaCl induction stress, GE-415 had significantlyhigher endogenous ABA. In association with higher levels ofABA, GE-415 had greater recovery root growth following severestress from 600 mM NaCl. Pretreatment with 10 µM ABA +200 mM NaCl induced several proteins with apparent molecularweights of 70-72, 54, 45, 36, 29 and 21 kDa in both genotypes.Qualitatively, GE-415 synthesized a unique 23-24 kDa proteinand quantitatively there was significantly more of the 21 kDaprotein in GE-415 compared to VL-481. The results indicate thatthe synthesis of stress proteins is correlated with the observedvariation in acquired tolerance of the two genotypes.Copyright1995, 1999 Academic Press Eleusine coracana Gaertn., salinity, polyethylene glycol, stress proteins, ABA, ABA-responsive proteins, finger millet seedlings  相似文献   

4.
Water stress was imposed upon soybean plants (Glycine max L.)grown in a greenhouse by withholding irrigation for 10 daysafter 5 weeks of growth, and the changes under stress in thelevels of free amino acids, free ammonia and protein were determinedin detail. With a decrease in the leaf water potential, theprotein content gradually decreased, whereas the free ammoniacontent was relatively constant. Water stress induced an increasein the levels of free amino acids normally present in proteinsuch as isoleucine, leucine, valine, phenylalanine, glutamineand histidine, indicating that protein hydrolysis occurs understress. Proline accumulated only under severe stress (below–1.5 MPa) and attained 0.86% of the dry weight on day10 (–2.6 MPa). Asparagine also accumulated only undersevere stress (below –2.0 MPa). The concentration of glutamicacid, alanine, aspartic acid, serine, glycine and arginine remainedvirtually unchanged during the stress period. Total proline(protein-bound+free) first decreased during mild to moderatestress, and then increased over that of the well-irrigated controlplants at severe stress due to a remarkable accumulation offree proline. These findings indicate that some de novo synthesisof proline occurs under severe stress and that the nitrogensource for this proline synthesis may be protein. (Received July 4, 1981; Accepted September 11, 1981)  相似文献   

5.
Kermode, A. R. and Bewley, J. D. 1985. The role of maturationdrying in the transition from seed development to germination.II. Post–germinative enzyme production and soluble proteinsynthetic pattern changes within the endosperm of Ricinus communisL. seeds.—J. exp. Bot. 36: 1916–1927. Immature seedsof Ricinus communis L. cv. Hale (castor bean) removed from thecapsule at 30 or 40 d after pollination (DAP) do not germinateunless first subjected to a desiccation treatment. This changefrom development to germination elicited by premature desiccationis also mirrored by a change, upon subsequent rehydration, inthe pattern of soluble protein synthesis within the endospermstorage tissue. Following rehydration of prematurely dried 30or 40 DAP seeds, soluble proteins characteristic of developmentcease to be synthesized after 5 h of imbibition, and those uniquelyassociated with germination and growth are then produced. Apattern of soluble storage protein breakdown comparable to thatfound in endosperms from mature seeds following imbibition isalso observed. In contrast, hydration of 40 DAP seeds immediatelyfollowing detachment from the mother plant results in a continuationof the developmental pattern of protein synthesis. Prematuredesiccation at 40 DAP elicits the production within the endospermof enzymes involved in protein reserve breakdown (leucyl ß–naphthylamidase;LeuNAase) and lipid utilization (isocitrate lyase; ICL) to levelscomparable to those observed in mature–hydrated endosperms.It is proposed that drying plays a role in redirecting metabolismfrom a developmental to a germinative mode; it also appearsto be a prerequisite for the induction of hydrolytic enzymesessential to the post–germinative (growth) phase of seedlingdevelopment. Key words: Desiccation-tolerance, germinability, seed development, castor bean  相似文献   

6.
Kermode, A. R., Gifford, D. J. and Bewley, J. D. 1985. The roleof maturation drying in the transition from seed developmentto germination. III. Insoluble protein synthetic pattern changeswithin the endosperm of Ricinus communis L. seeds.—J.exp. Bot. 36: 1928–1936. Immature seeds of Ricinus communisL. cv. Hale (castor bean) removed from the capsule at 30 or40 days after pollination (DAP) can be induced to germinateby being subjected to drying. This desiccation–inducedswitch from development to germination is mirrored by a change,upon subsequent rehydration, in the pattern of insoluble proteinsynthesis within the endosperm storage tissue. During normaldevelopment from 25–40 DAP there is rapid synthesis ofthe insoluble (11S) crystalloid storage protein. At later stagesof development (45 and 50 DAP), crystalloid protein synthesisdeclines markedly and synthesis of new insoluble proteins commences.Following premature drying at 30 or 40 DAP, the pattern of insolubleprotein synthesis upon rehydration is virtually identical tothat following imbibition of the mature seed. Proteins synthesizedduring normal late development (at 45 and 50 DAP) are producedup to 48 h after imbibition; a subsequent change in the patternof insoluble protein synthesis occurs between 48 and 72 h. Thus,in contrast to the rapid switch in the pattern of soluble proteinsynthesis induced by drying, insoluble protein syntheses withinthe endosperm are redirected towards those uniquely associatedwith a germination/growth programme only after a considerabledelay following mature seed imbibition, or following rehydrationof the prematurely dried seed. Nevertheless, these results supportour contention that drying plays a role in the suppression ofthe developmental metabolic programme and in the permanent inductionof a germination/growth programme. Key words: Desiccation, crystalloid storage proteins, castor bean, seed development, seed germination  相似文献   

7.
CHOINSKI  J. S  JR; TUOHY  J M 《Annals of botany》1991,68(3):227-233
The germination responses of seeds from the African tree speciesColophospermum mopane, Combretum apiculatum, Acacia tortilisand Acacia karroo under varying regimes of temperature and waterstress (induced by incubation in PEG 8000) are reported Withthe exception of Combretum (at –0.14 and –0.29 MPa)and Colophospermum (at –0.29 MPa), incubation in PEG decreasedthe maximum achieved germination percentage (90–100% forall species), but did not extend the germination lag (exceptin Combretum) or affect the time required to reach maximum germinationCombretum and Colophospermum were found to germinate under thewidest range of temperatures and water potentials, for example,as strongly negative as –1.0 MPa at 20 and 30 °C,respectively These seeds also showed greater or equivalent hypocotylelongation in PEG solutions creating potentials of –0.14,–0.29 or –0.51 MPa when compared with seeds germinatedin water, indicating an additional stress adaptation Acaciaspecies showed progressive reduction in germination rates andradicle elongation in response to decreasing water potentialExperiments giving pre-imbibition treatments in water priorto transfer to PEG solutions showed that both Acacia speciesgerminated at approximately 90% if given such pre-treatmentand less than 10% if transferred directly to PEG It is concludedthat the most stress-adapted species studied are Colophospermummopane and Combretum apiculatum, a finding generally correlatedwith the growth habit of these trees Colophospermum mopane, Combretum apiculatum, Acacia tortilis, Acacia karroo, germination, water stress, Zimbabwe  相似文献   

8.
Addition of 6 per cent mannitol or sorbitol to liquid culturemedium decreased the water potential (w) by –0.93 MPa( 382 ± 7 mOsm kg–1 water). Sycamore cells grownto exponential phase in such media exhibited increased levelsof total and soluble protein and respiratory activity, but decreasedamounts of free proline. Soybean cells showed increased respiratoryactivity and free proline levels, but total protein levels remainedunaffected. Soluble protein levels were reduced under sorbitol-inducedstress. In both species osmotic stress had little effect oncell dry weight. Water relation studies indicate that sycamore cells are capableof much greater osmotic adjustment than soybean cells, and thatmannitol uptake does not contribute significantly to that adjustment. Acer pseudoplatanus L., sycamore, Glycine max L. var. Biloxi, soybean, suspension culture cells, osmotic stress, water relations, metabolism  相似文献   

9.
Leaf d. wt and the levels of soluble sugars and proteins showa two-phase development during leaf growth in Stevia rebaudiana.The initial large increases in leaf size are due mainly to waterintake up to an area of around 9–10 cm2. Increases inabsolute protein content were initially slow though in the secondphase increased it rapidly with dry matter and soluble sugarcontent. In relative terms, however, the concentration of free sugarsdeclined throughout leaf growth. The data indicate that leafprotein synthesis is most probably dependent upon a carbon supplyfrom in situ photo synthesis which only becomes significantat 80 per cent of full leaf area. Stevia rebaudiana Bert., leaf ontogeny, protein content, sugar content  相似文献   

10.
White clover plants were subjected to either a short-term developingwater stress or long-term stable levels of water deficit on‘water stress columns’. The short-term stress reducedplant water status to –2?0 MPa over 15 d. The water stresscolumns imposed only mild levels of water stress (a reductionof 0?35 MPa in leaf water potential for the more severe treatment)but these were maintained for several weeks. The absolute growthof plants on the control columns was maintained throughout theexperimental period. Vegetative growth was measured. Stolon, petiole, and laminagrowth were all reduced to some extent when plants were grownsymbiotically. The two regimes gave comparable results. Whennitrate was supplied there was no effect of water stress. Aconsiderably reduced absolute growth rate did not result ina similar decrease in final organ size. Stolon growth was mostreduced by water stress. Leaf death during water stress wasas important as changes in growth in determining final dry matteryield. Consequently, the yield of petiole and lamina from plantsgrown without supplied nitrate on the water stress columns waslower than that of stolon at the end of the treatment period. The merits of the water stress column system for imposing long-termwater deficit are discussed. Key words: Trifolium repens, white clover, water stress, vegetative growth  相似文献   

11.
Cells of Anacystis nidulans grown at 30°C were incubatedwith 14C-Chlorella protein hydrolysate at the elevated temperatures(30–55°C) and the effect of heat shock treatment onprotein synthesis was studied. Incubation temperatures higherthan 45°C caused a significant decrease in the incorporationof amino acids into proteins. Further, the heat shock treatmentinduced significant changes in the fluorographic profile ofthe newly synthesized proteins. (Received October 25, 1985; Accepted December 4, 1985)  相似文献   

12.
Phosphorus and nitrogen uptake capacities were assessed during36–58 d drying cycles to determine whether the abilityof sagebrush (Artemisia tridentata Nutt.) to absorb these nutrientschanged as the roots were subjected to increasing levels ofwater stress. Water was withheld from mature plants in large(6 I) containers and the uptake capacity of excised roots insolution was determined as soil water potentials decreased from–0.03 MPa to –5.0 MPa. Phosphorus uptake rates of excised roots at given substrateconcentrations increased as preharvest soil water potentialsdecreased to –5.0 MPa. Vmax and Km also increased as soilwater potentials declined. Declining soil water potentials depressednitrogen uptake at set substrate concentrations, but uptakecapacity, calculated as the sum Vmax for both NH+4+NO3,did not change significantly with drying. The sum Vmax correlatedwith root nitrogen concentration. Root uptake capacity for nitrogen and phosphorus was extremelystable under severe water stress in this aridland shrub. Maintenanceof uptake capacity, coupled with a previously demonstrated abilityto conduct hydraulic lift, may enable A. tridentata better tomaintain nitrogen and phosphorus uptake as soil water availabilitydeclines. These mechanisms may be important in the ability ofA. tridentata to maintain growth, complete reproduction, andgain an advantage against competitors late in the season whenthe soil layers with higher nutrient availability are dry. Key words: Kinetics, nitrogen, phosphorus, roots, water stress  相似文献   

13.
Mohapatra, S. S., Poole, R. J. and Dhindsa, R. S. 1987. Coldacclimation, freezing resistance and protein synthesis in alfalfa(Medicago sativa L. cv. Saranac).—J. exp. Bot. 38: 1697–1703. Changes in freezing resistance (percent survival at —10°C), pattern of protein synthesis and translatable mRNApopulation during cold acclimation of alfalfa (Medicago sativaL. cv. Saranac) have been examined. Two days of cold acclimationat 4 °C increased freezing resistance from about 6% to 40%,protein content by 200% and total RNA content by 100%. Acclimationfor longer periods did not cause further increases in freezingresistance, protein content or RNA content. Examination of proteinchanges by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE) coupled with protein staining, and by fluorographyof in vivo labelled proteins separated by SDS-PAGE, showed thatseveral proteins are increasingly or newly synthesized duringcold acclimation. Analysis of in vitro translation productsby SDS-PAGE and fluorography shows changes in the populationof translatable mRNAs. It is concluded that in this varietyof alfalfa cold acclimation for only 2 d is sufficient to confermaximum freezing resistance, and that changes in proteins duringcold acclimation are regulated most probably at the transcnptionallevel. Key words: Freezing resistance, protein synthesis, cold acclimation, SDS-PAGE, Medicago sativa L.  相似文献   

14.
Transposon tagging with modified maize DsGUS constructswas used to isolate genes induced by oxygen deprivation in Arabidopsisthaliana. Seedlings of 800 gene-trap (DsG) and 600 enhancer-trap(DsE) lines were grown on vertically positioned plates for 1 week,oxygen deprived for up to 24 h and stained for GUS activity.Oxygen deprivation induced intricate patterns of gene expressionin seedlings of 65 lines. The insertion site and phenotypesof 15 lines were examined. Surprisingly, none of the insertionswere into genes that encode known anaerobic polypeptides. Insertionswere identified within or adjacent to genes encoding proteinsof regulatory, enzymatic, mitochondrial protein import and unknownfunction, as well as adjacent to genes encoding a putative receptor-likekinase and putative sensor-histidine kinase. Four lines hadsignificantly lower ADH activity after 24 h of oxygen deprivationand three of these showed reduced stress tolerance. Two lineswith wild-type levels of ADH were low-oxygen intolerant. Paradoxically,several lines had significantly higher ADH activity after 12 hof oxygen deprivation but reduced stress tolerance. Caffeinetreatment, which increased ADH specific activity in wild-typeseedlings under aerobic conditions, was sufficient to increaseGUS staining in seven of the 15 lines, providing evidence thatthese genes may be regulated by cytosolic calcium levels. Theseresults demonstrate the effectiveness of the Ds–GUS taggingsystem in the identification of genes that are regulated inresponse to oxygen deprivation and a calcium second messenger.  相似文献   

15.
Effects of kinetin (K), gibberellin A3 (GA3), and 2-(chloroethyl)-trimethylammoniumchloride (CCC) on levels of alanine aminotransferase (GPT) andrates of protein synthesis were studied with both intact plantsand isolated leaf segments of Lolium temulentum L. In intactplants CCC stimulated and CA3 reduced GPT activity, the effectsbsing much greater in 8.h than in 16-h photoporiods. CCC showedmaximum stimulatory effects at 10–2 M and K at 5 x 105M. No effect of GA3 could be demonstrated with concentrationsup to 10–4M. Both K and CCC retarded GPT decline in leafsections, the latter without associated effects upon pigmentbreakdown. Cycloheximide was highly effective in reducing proteinsynthesis in leaf sections. A close correlation between rateof protein synthesis and GPT activity was found over an inhibitorconcentration range from 10–6 to 10–4 M. The resultsare discussed in terms of possible methods of in vivo regulationof GPT activity.  相似文献   

16.
Pattern of 3H-uridine incorporation into RNA of spores of Onocleasensibilis imbibed in complete darkness (non-germinating conditions)and induced to germinate in red light was followed by oligo-dTcellulose chromatography, gel electrophoresis coupled with fluorographyand autoradiography. In dark-imbibed spores, RNA synthesis wasinitiated about 24 h after sowing, with most of the label accumulatingin the high mol. wt. poly(A)RNA fraction. There was noincorporation of the label into poly(A) + RNA until 48 h aftersowing. In contrast, photo-induced spores began to synthesizeall fractions of RNA within 12 h after sowing and by 24 h, incorporationof 3H-uridine into RNA of irradiated spores was nearly 70-foldhigher than that into dark-imbibed spores. Protein synthesis,as monitored by 3H-arginine incorporation into the acid-insolublefraction and by autoradiography, was initiated in spores within1–2 h after sowing under both conditions. Autoradiographicexperiments also showed that the onset of protein synthesisin the cytoplasm of the germinating spore is independent ofthe transport of newly synthesized nuclear RNA. One-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis of35S-methionine-labelled proteins revealed a good correspondencebetween proteins synthesized in a cell-free translation systemdirected by poly(A) +RNA of dormant spores and those synthesizedin vivo by dark-imbibed and photo-induced spores. These resultsindicate that stored mRNAs of O. sensibilis spores are functionallycompetent and provide templates for the synthesis of proteinsduring dark-imbibition and germination. Key words: Onoclea sensibilis, fern spore germination, gene expression, protein synthesis, sensitive fern, stored mRNA  相似文献   

17.
White clover plants were subjected to either short-term developingwater stress or long-term stable levels of water deficit. Thehort-term stress reduced plant water status to about –2·0MPa over 16 d. The long-term stress was less severe, but wassustained for several weeks. Long-term water stress promotedthe production of inflorescences. However, water stress alsoincreased floret abortion and the premature death of whole flowerheads. The number of ovules per floret was decreased by waterstress. The most striking effect of both long- and short-term waterdeficit was to reduce pollen viability measured with the fluorochromaticassay. This was not an artefact of assay conditions. The pollenfrom water-stressed flower heads was not reversibly dehydrated;it did not score at similar viability to controls after incubationin conditions which hydrate pollen. In addition, the pollenfrom water-stressed plants lost viability more rapidly thanpollen from well-watered plants after removal from the flowerhead. The consequences of reduced pollen viability on seed set wereinvestigated by hand-crossing within and between groups of plantsmaintained for several weeks at three levels of water supply.Flower heads pollinated with pollen from water-stressed plantsset fewer seeds per floret than those pollinated with controlpollen. Key words: Trifolium repens, white clover, water stress, floral characters, seed set  相似文献   

18.
Young gametophytes of the sensitive fern, Onoclea sensibilis,respond to heat-shock by synthesizing in excess certain proteinsthat are made at normal growth temperature. Enhanced proteinsynthesis occurred during a 2 h heat-shock at a range of temperaturesbetween 38 °C and 50 °C. Although a temperature of 50°C proved lethal, a 5 min pulse at 50 °C resulted inenhanced synthesis of heat-shock proteins which continued forseveral hours at 25 °C. After heat-shock at 50 °C for10 or 15 min, the gametophytes temporarily lost their capacityfor protein synthesis but normal protein synthesis was resumedwithin 24 h of heat-shock. A heat-shock at 38 °C precedingone at 50 °C did not have any protecting effect on the gametophytes.In vitro translation of poly(A)+ RNA isolated from heat-shockedgametophytes yielded several proteins including heat-shock proteins.The results suggest that, rather than activating genes encodingnew messages for the synthesis of stress proteins, heat-shockof gametophytes of O. sensibilis triggers a controlling systemwhich enhances the translation of certain messages that aresynthesized at normal growth temperature. Key words: Onoclea sensibilis, heat-shock response, protein synthesis, sensitive fern, in vitro translation  相似文献   

19.
Osmotic Adjustment and Stomatal Response to Water Deficits in Maize   总被引:1,自引:1,他引:0  
A pot experiment was carried out using five maize {Zea maysL.) cultivars under three soil moisture levels (MPa 0 to –0.05,–0.3 to –0.9 and –1.2 to –1.5) to investigatethe effects of water deficits on osmotic adjustment and stomatalconductance. The degree of leaf rolling and the sugar and nutrientconcentrations in leaf cell sap were measured. Leaf water potential and osmotic potential decreased and stomatalconductance decreased with increasing water deficits. Stomatalconductance correlated positively with leaf water potentialand osmotic potential. Degree of leaf rolling was lower in cultivarswhich maintained higher turgor. Osmotic adjustment of 0.08 to0.43 MPa was found under the lowest soil moisture level in fivecultivars used. Sugar and K were the major osmotic substancesin the maize plant. Sugar, K and Mg concentrations increasedunder water deficit, and correlated negatively with a decreasein osmotic potential. Key words: Zea mays L., leaf water relations, leaf rolling, osmotic adjustment, stomatal conductance, water deficit  相似文献   

20.
A 76 amino acid sequence of NDH-A (the protein encoded by plastidndhA gene) from barley (Hordeum vulgare L.) was expressed asa fusion protein with rß-galactosidase in E. coli.The corresponding antibody generated in rabbits was used toinvestigate localization, expression and synthesis in vitroof NDH-A. NDH-A was identified as a 35 kDa polypeptide localizedin thylakoid membrane. Western blots shows a large increasein NDH-A levels when barley leaves were incubated under photooxidativeconditions, which was more pronounced in mature-senescent leavesthan in young leaves. Immunoprecipitation of the [35S]methioninelabelled proteins, synthesized in vitro by isolated chloroplasts,demonstrated the synthesis in chloroplasts of the NDH-A 35 kDapolypeptide when barley leaves had been incubated under photooxidativeconditions. The results indicate that ndh genes may be involvedin the protection of chloroplasts against photooxidative stress,particularly in mature-senescent leaves. (Received November 13, 1995; Accepted February 5, 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号