共查询到20条相似文献,搜索用时 15 毫秒
1.
ERIC A. DAVIDSON KATHLEEN E. SAVAGE SUSAN E. TRUMBORE† WERNER BORKEN ‡ 《Global Change Biology》2006,12(6):944-956
The major driving factors of soil CO2 production – substrate supply, temperature, and water content – vary vertically within the soil profile, with the greatest temporal variations of these factors usually near the soil surface. Several studies have demonstrated that wetting and drying of the organic horizon contributes to temporal variation in summertime soil CO2 efflux in forests, but this contribution is difficult to quantify. The objectives of this study were to partition CO2 production vertically in a mixed hardwood stand of the Harvard Forest, Massachusetts, USA, and then to use that partitioning to evaluate how the relative contributions of CO2 production by genetic soil horizon vary seasonally and interannually. We measured surface CO2 efflux and vertical soil profiles of CO2 concentration, temperature, water content, and soil physical characteristics. These data were applied to a model of effective diffusivity to estimate CO2 flux at the top of each genetic soil horizon and the production within each horizon. A sensitivity analysis revealed sources of uncertainty when applying a diffusivity model to a rocky soil with large spatial heterogeneity, especially estimates of bulk density and volumetric water content and matching measurements of profiles and surface fluxes. We conservatively estimate that the O horizon contributed 40–48% of the total annual soil CO2 efflux. Although the temperature sensitivity of CO2 production varied across soil horizons, the partitioning of CO2 production by horizon did not improve the overall prediction of surface CO2 effluxes based on temperature functions. However, vertical partitioning revealed that water content covaried with CO2 production only in the O horizon. Large interannual variations in estimates of O horizon CO2 production indicate that this layer could be an important transient interannual source or sink of ecosystem C. 相似文献
2.
C. I. Salimon E. A. Davidson† R. L. Victoria A. W. F. Melo 《Global Change Biology》2004,10(5):833-843
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks. 相似文献
3.
Currently, it is unknown what role tropical forest soils will play in the future global carbon cycle under higher temperatures. Many tropical forests grow on deeply weathered soils and although it is generally accepted that soil carbon decomposition increases with higher temperatures, it is not known whether subsurface carbon pools are particularly responsive to increasing soil temperatures. Carbon dioxide (CO2) diffusing out of soils is an important flux in the global carbon. Although soil CO2 efflux has been the subject of many studies in recent years, it remains difficult to deduct controls of this flux because of the different sources that produce CO2 and because potential environmental controls like soil temperature and soil moisture often covary. Here, we report results of a 5‐year study in which we measured soil CO2 production on two deeply weathered soil types at different depths in an old‐growth tropical wet forest in Costa Rica. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). Annual soil CO2 efflux varied between 2.8–3.6 μmol CO2‐C m?2 s?1 (old alluvium) and 3.4–3.9 μmol CO2‐C m?2 s?1 (residual). More than 75% of the CO2 was produced in the upper 0.5 m (including litter layer) and less than 7% originated from the soil below 1 m depth. This low contribution was explained by the lack of water stress in this tropical wet forest which has resulted in very low root biomass below 2 m depth. In the top 0.5 m CO2 production was positively correlated with both temperature and soil moisture; between 0.6 and 2 m depth CO2 production correlated negatively with soil moisture in one soil and positively with photosynthetically active radiation in the other soil type. Below 2 m soil CO2 production strongly increased with increasing temperature. In combination with reduced tree growth that has been shown for this ecosystem, this would be a strong positive feedback to ecosystem warming. 相似文献
4.
Noah Fierer rew S. Allen Joshua P. Schimel Patricia A. Holden† 《Global Change Biology》2003,9(9):1322-1332
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil. 相似文献
5.
The immediate effects of tillage on protected soil C and N pools and on trace gas emissions from soils at precultivation levels of native C remain largely unknown. We measured the response to cultivation of CO2 and N2O emissions and associated environmental factors in a previously uncultivated U.S. Midwest Alfisol with C concentrations that were indistinguishable from those in adjacent late successional forests on the same soil type (3.2%). Within 2 days of initial cultivation in 2002, tillage significantly (P=0.001, n=4) increased CO2 fluxes from 91 to 196 mg CO2‐C m?2 h?1 and within the first 30 days higher fluxes because of cultivation were responsible for losses of 85 g CO2‐C m?2. Additional daily C losses were sustained during a second and third year of cultivation of the same plots at rates of 1.9 and 1.0 g C m?2 day?1, respectively. Associated with the CO2 responses were increased soil temperature, substantially reduced soil aggregate size (mean weight diameter decreased 35% within 60 days), and a reduction in the proportion of intraaggregate, physically protected light fraction organic matter. Nitrous oxide fluxes in cultivated plots increased 7.7‐fold in 2002, 3.1‐fold in 2003, and 6.7‐fold in 2004 and were associated with increased soil NO3? concentrations, which approached 15 μg N g?1. Decreased plant N uptake immediately after tillage, plus increased mineralization rates and fivefold greater nitrifier enzyme activity, likely contributed to increased NO3? concentrations. Our results demonstrate that initial cultivation of a soil at precultivation levels of native soil C immediately destabilizes physical and microbial processes related to C and N retention in soils and accelerates trace gas fluxes. Policies designed to promote long‐term C sequestration may thus need to protect soils from even occasional cultivation in order to preserve sequestered C. 相似文献
6.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling. 相似文献
7.
The effect of soil warming on CO2 and CH4 flux from a spruce–fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May – November) in replicated 15 × 15-m plots using electric cables buried 1–2 cm below the soil surface; replicated unheated plots served as the control. CO2 evolution from the soil surface and soil air CO2 concentrations both showed clear seasonal trends and significant (P < 0.0001) positive exponential relationships with soil temperature. Soil warming caused a 25–40% increase in CO2 flux from the heated plots compared to the controls. No significant differences were observed between heated and control plot soil air CO2 concentrations which we attribute to rapid equilibration with the atmosphere in the O horizon and minimal treatment effects in the B horizon. Methane fluxes were highly variable and showed no consistent trends with treatment. 相似文献
8.
The turnover of carbon pools contributing to soil CO2 and soil respiration in a temperate forest exposed to elevated CO2 concentration 总被引:2,自引:0,他引:2
LINA TANEVA JEFFREY S. PIPPEN† WILLIAM H. SCHLESINGER† MIQUEL A. GONZALEZ-MELER 《Global Change Biology》2006,12(6):983-994
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times. 相似文献
9.
MOLLY A. CAVALERI STEVEN F. OBERBAUER† MICHAEL G. RYAN‡ 《Global Change Biology》2006,12(12):2442-2458
The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem‐scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable scaffolding tower to measure woody tissue CO2 efflux from ground level to the canopy top across a range of sites of varying slope and soil phosphorus content in a primary tropical rain forest in Costa Rica. The objectives of this study were to: (1) determine whether to use surface area, volume, or biomass for modeling and extrapolating wood CO2 efflux, (2) determine if wood CO2 efflux varied seasonally, (3) identify if wood CO2 efflux varied by functional group, height in canopy, soil fertility, or slope, and (4) extrapolate wood CO2 efflux to the forest. CO2 efflux from small diameter woody tissue (<10 cm) was related to surface area, while CO2 efflux from stems >10 cm was related to both surface area and volume. Wood CO2 efflux showed no evidence of seasonality over 2 years. CO2 efflux per unit wood surface area at 25° (FA) was highest for the N‐fixing dominant tree species Pentaclethra macroloba, followed by other tree species, lianas, then palms. Small diameter FA increased steeply with increasing height, and large diameter FA increased with diameter. Soil phosphorus and slope had slight, but complex effects on FA. Wood CO2 efflux per unit ground area was 1.34±0.36 μmol m?2 s?1, or 508±135 g C m?2 yr?1. Small diameter wood, only 15% of total woody biomass, accounted for 70% of total woody tissue CO2 efflux from the forest; while lianas, only 3% of total woody biomass, contributed one‐fourth of the total wood CO2 efflux. 相似文献
10.
FRANK HAGEDORN DIETER SPINNLER† MAYA BUNDT PETER BLASER ROLF SIEGWOLF‡ 《Global Change Biology》2003,9(6):862-872
The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2‐derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above‐ and below‐ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2‐derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long‐term soil C. 相似文献
11.
Eleneide Doff sotta Patrick Meir† Yadvinder Malhi† Antonio Donato nobre‡ Martin Hodnett§ John Grace† 《Global Change Biology》2004,10(5):601-617
This study investigated the spatial and temporal variation in soil carbon dioxide (CO2) efflux and its relationship with soil temperature, soil moisture and rainfall in a forest near Manaus, Amazonas, Brazil. The mean rate of efflux was 6.45±0.25 SE μmol CO2 m?2s?1 at 25.6±0.22 SE°C (5 cm depth) ranging from 4.35 to 9.76 μmol CO2 m?2s?1; diel changes in efflux were correlated with soil temperature (r2=0.60). However, the efflux response to the diel cycle in temperature was not always a clear exponential function. During period of low soil water content, temperature in deeper layers had a better relationship with CO2 efflux than with the temperature nearer the soil surface. Soil water content may limit CO2 production during the drying‐down period that appeared to be an important factor controlling the efflux rate (r2=0.39). On the other hand, during the rewetting period microbial activity may be the main controlling factor, which may quickly induce very high rates of efflux. The CO2 flux chamber was adapted to mimic the effects of rainfall on soil CO2 efflux and the results showed that efflux rates reduced 30% immediately after a rainfall event. Measurements of the CO2 concentration gradient in the soil profile showed a buildup in the concentration of CO2 after rain on the top soil. This higher CO2 concentration developed shortly after rainfall when the soil pores in the upper layers were filled with water, which created a barrier for gas exchange between the soil and the atmosphere. 相似文献
12.
MATS G. ÖQUIST TOBIAS SPARRMAN† LEIF KLEMEDTSSON‡ STINA HARRYSSON DROTZ HARALD GRIP JÜRGEN SCHLEUCHER§ MATS NILSSON 《Global Change Biology》2009,15(11):2715-2722
Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems. 相似文献
13.
14.
Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak 总被引:1,自引:0,他引:1
Bruce A. Hungate PauL. Dijkstra DalE. W. Johnson † C. RosS. Hinkle‡ BerT. G. Drake 《Global Change Biology》1999,5(7):781-789
We report changes in nitrogen cycling in Florida scrub oak in response to elevated atmospheric CO2 during the first 14 months of experimental treatment. Elevated CO2 stimulated above-ground growth, nitrogen mass, and root nodule production of the nitrogen-fixing vine, Galactia elliottii Nuttall. During this period, elevated CO2 reduced rates of gross nitrogen mineralization in soil, and resulted in lower recovery of nitrate on resin lysimeters. Elevated CO2 did not alter nitrogen in the soil microbial biomass, but increased the specific rate of ammonium immobilization (NH4+ immobilized per unit microbial N) measured over a 24-h period. Increased carbon input to soil through greater root growth combined with a decrease in the quality of that carbon in elevated CO2 best explains these changes. These results demonstrate that atmospheric CO2 concentration influences both the internal cycling of nitrogen (mineralization, immobilization, and nitrification) as well as the processes that regulate total ecosystem nitrogen mass (nitrogen fixation and nitrate leaching) in Florida coastal scrub oak. If these changes in nitrogen cycling are sustained, they could cause long-term feedbacks to the growth responses of plants to elevated CO2. Greater nitrogen fixation and reduced leaching could stimulate nitrogen-limited plant growth by increasing the mass of labile nitrogen in the ecosystem. By contrast, reduced nitrogen mineralization and increased immobilization will restrict the supply rate of plant-available nitrogen, potentially reducing plant growth. Thus, the net feedback to plant growth will depend on the balance of these effects through time. 相似文献
15.
16.
We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m?2 s?1 (13% increase) and 0.37 µmol m?2 s?1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m?2 s?1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux. 相似文献
17.
Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models 总被引:6,自引:4,他引:2
Elise Pendall Scott Bridgham Paul J. Hanson Bruce Hungate David W. Kicklighter Dale W. Johnson Beverly E. Law Yiqi Luo J. Patrick Megonigal Maria Olsrud Michael G. Ryan Shiqiang Wan 《The New phytologist》2004,162(2):311-322
18.
Responses of net ecosystem CO2 exchange in managed grassland to long-term CO2 enrichment, N fertilization and plant species 总被引:2,自引:0,他引:2
URS AESCHLIMANN JOSEF NÖSBERGER PETER J. EDWARDS MANUEL K. SCHNEIDER MICHAEL RICHTER & HERBERT BLUM 《Plant, cell & environment》2005,28(7):823-833
The effects of elevated pCO2 on net ecosystem CO2 exchange were investigated in managed Lolium perenne (perennial ryegrass) and Trifolium repens (white clover) monocultures that had been exposed continuously to elevated pCO2 (60 Pa) for nine growing seasons using Free Air CO2 Enrichment (FACE) technology. Two levels of nitrogen (N) fertilization were applied. Midday net ecosystem CO2 exchange (mNEE) and night-time ecosystem respiration (NER) were measured in three growing seasons using an open-flow chamber system. The annual net ecosystem carbon (C) input resulting from the net CO2 fluxes was estimated for one growing season. In both monocultures and at both levels of N supply, elevated pCO2 stimulated mNEE by up to 32%, the exact amount depending on intercepted PAR. The response of mNEE to elevated pCO2 was larger than that of harvestable biomass. Elevated pCO2 increased NER by up to 39% in both species at both levels of N supply. NER, which was affected by mNEE of the preceding day, was higher in T. repens than in L. perenne. High N increased NER compared to low N supply. According to treatment, the annual net ecosystem C input ranged between 210 and 631 g C m−2 year−1 and was not significantly affected by the level of pCO2. Low N supply led to a higher net C input than high N supply. We demonstrated that at the ecosystem level, there was a long-term stimulation in the net C assimilation during daytime by elevated pCO2. However, because NER was also stimulated, net ecosystem C input was not significantly increased at elevated pCO2. The annual net ecosystem C input was primarily affected by the amount of N supplied. 相似文献
19.
Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil 总被引:1,自引:0,他引:1
Soil microbial biomass C (Cmic) is a sensitive indicator of trends in organic matter dynamics in terrestrial ecosystems. This study was conducted to determine the effects of tropospheric CO2 or O3 enrichments and moisture variations on total soil organic C (Corg), mineralizable C fraction (CMin), Cmic, maintenance respiratory (qCO2) or Cmic death (qD) quotients, and their relationship with basal respiration (BR) rates and field respiration (FR) fluxes in wheat‐soybean agroecosystems. Wheat (Triticum aestivum L.) and soybean (Glycine max. L. Merr) plants were grown to maturity in 3‐m dia open‐top field chambers and exposed to charcoal‐filtered (CF) air at 350 μL CO2 L?1; CF air + 150 μL CO2 L?1; nonfiltered (NF) air + 35 nL O3 L?1; and NF air + 35 nL O3 L?1 + 150 μL CO2 L?1 at optimum (? 0.05 MPa) and restricted soil moisture (? 1.0 ± 0.05 MPa) regimes. The + 150 μL CO2 L?1 additions were 18 h d?1 and the + 35 nL O3 L?1 treatments were 7 h d?1 from April until late October. While Corg did not vary consistently, CMin, Cmic and Cmic fractions increased in soils under tropospheric CO2 enrichment (500 μL CO2 L?1) and decreased under high O3 exposures (55 ± 6 nL O3 L?1 for wheat; 60 ± 5 nL O3 L?1 for soybean) compared to the CF treatments (25 ± 5 nL O3 L?1). The qCO2 or qD quotients of Cmic were also significantly decreased in soils under high CO2 but increased under high O3 exposures compared to the CF control. The BR rates did not vary consistently but they were higher in well‐watered soils. The FR fluxes were lower under high O3 exposures compared to soils under the CF control. An increase in Cmic or Cmic fractions and decrease in qCO2 or qD observed under high CO2 treatment suggest that these soils were acting as C sinks whereas, reductions in Cmic or Cmic fractions and increase in qCO2 or qD in soils under elevated tropospheric O3 exposures suggest the soils were serving as a source of CO2. 相似文献
20.
Pascal A. Niklaus 《Global Change Biology》1998,4(4):451-458
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems. 相似文献