首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orexin is one of the orexigenic neuropeptides in the hypothalamus. Orexin neurons in the lateral hypothalamus (LH) project into the cerebral cortex and hippocampus in which the receptors are distributed in high concentrations. Therefore, to elucidate the actions of orexin in the cerebral cortex, we examined its effects on the mRNA expressions of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A, NR2B) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits (GluR1, GluR2) following 6-day application of orexin-A or orexin-B to rat primary cortical neuron cultures. The mRNAs of NR1 and NR2A subunits were significantly decreased by orexin-A and orexin-B at concentrations over 0.1 μM and 0.01 μM, respectively. The mRNA expression of NR2B subunit was also significantly decreased by orexin-A and orexin-B only at the concentration of 1 μM. Moreover, orexin-A and orexin-B at concentrations over 0.01 μM significantly decreased the mRNA expressions of AMPA receptor subunits, GluR1 and GluR2. The present study demonstrated that orexins significantly suppressed RNA expressions of NMDA and AMPA receptor subunits in cortical neuron cultures, suggesting that orexin may regulate the higher functions of the cerebral cortex as well as be involved in energy regulation in the hypothalamus.  相似文献   

2.
It has been hypothesized that glutamatergic neurotransmission is related to the therapeutic effect of antipsychotic drugs. To test this hypothesis, we measured by use of the Western blot technique the polypeptide levels of NMDA receptor subunits, that is, NMDAR1, 2A, 2B, and 2C, in several regions of the rat brain after chronic treatment with haloperidol (HPD) or clozapine (CLZ). Each rat was intraperitoneally injected with HPD or CLZ at 10:00 h daily for 14 days. The brain regions examined were frontal cortex, striatum, nucleus accumbens, hippocampus, and cerebellum. Decreases in the polypeptide level of NMDAR2B were seen in hippocampus (but not in other brain regions) following the treatment with HPD or CLZ. Altered levels in NMDAR1-, 2A-, and 2C were not detected in any brain regions examined. We infer that an alteration in NMDAR2B in hippocampus is related to therapeutic effects of antipsychotic drugs.  相似文献   

3.
The NMDA receptor is believed to be important in a wide range of nervous system functions including neuronal migration, synapse formation, learning and memory. In addition, it is involved in excitotoxic neuronal cell death that occurs in a variety of acute and chronic neurological disorders. Besides of agonist/coagonist sites, other modulator sites, including butyrophenone site may regulate the N-methyl-d-aspartate receptor. It has been shown that haloperidol, an antipsychotic neuroleptic drug, interacts with the NR2B subunit of NMDA receptor and inhibits NMDA response in neuronal cells. We found that NMDA receptor was co-immunoprecipitated by anti-Ras antibody and this complex, beside NR2 subunit of NMDA receptor contained haloperidol-binding proteins, nNOS and Ras-GRF. Furthermore, we have shown that haloperidol induces neurotoxicity of neuronal cells via NMDA receptor complex, accompanied by dissociation of Ras-GRF from membranes and activation of c-Jun-kinase. Inclusion of insulin prevented relocalization of Ras-GRF and subsequent neuronal death. Haloperidol-induced dissociation of Ras-GRF leads to inhibition of membrane-bound form of Ras protein and changes downstream regulators activity that results in the initiation of the apoptotic processes via the mitochondrial way. Our results suggest that haloperidol induces neuronal cell death by the interaction with NMDA receptor, but through the alternative from glutamate excitotoxicity signaling pathway.  相似文献   

4.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

5.
Chronic ethanol treatment of cultured neurons from various brain areas has been found to increase NMDA receptor function and to alter the levels of some NMDA receptor subunit proteins. Because the cultured neurons are exposed to ethanol during a period when the NMDA receptor is undergoing developmental changes in subunit expression, we wished to determine whether ethanol treatment alters this developmental pattern. We found that 3 days of treatment of cerebellar granule neurons with ethanol, which was previously reported to increase NMDA receptor function, resulted in a delay in the 'developmental switch' of the NR2A and NR2B subunits, i.e. the developmental decrease in NR2B and increase in NR2A protein expression. As a result, the level of NR2B was higher, and that of NR2A was lower, in the ethanol-treated cells than in control cells. Cross-linking experiments showed that the changes in total receptor subunit proteins levels were reflected in cell-surface expressed proteins, indicating changes in the amount of functional receptors. These results were confirmed by a higher potency of glycine at the NMDA receptor in the ethanol-treated cells, as determined by NMDA/glycine-induced increases in intracellular Ca(2+). The results suggest that the mechanism by which ethanol alters NMDA receptor expression in cultured neurons, where receptors are undergoing development, differs from the mechanism of ethanol's effect on NMDA receptors in adult brain. Changes in the proportion of NR2A and NR2B subunits may contribute to effects of ethanol on neuronal development.  相似文献   

6.
7.
8.
We measured the binding of [3H]3-[(±)2-carboxypiperazin-4-yl]propyl-1-phosphonic acid ([3H]CPP), a competitive ligand forN-methyl-d-aspartate (NMDA) receptors, in double mutant spontaneously epileptic rats (SER:zi/zi, tm/tm) and their parent strains, zitter rats, and tremor rats, and WTC rats (control rats from tremor rats derived from Kyoto:Wistar rats) before and after the onset of seizures in tremor rats and SER. Significantly lower [3H]CPP binding receptor density (Bmax) was found in the cortex of SER and zitter rats at 12–15 weeks of age than in that of WTC rats and tremor rats, and at 4 weeks of age the Bmax in zitter rats was lower than that in the other strains. The reduction of Bmax in SER at 12–15 weeks of age may reflect a down regulation of NMDA receptors due to repetitive tonic seizures in SER.  相似文献   

9.
Cerebellar granule cells maintained in vitro as primary cultures are a relatively homogeneous neuronal population that can be used to evaluate the developmental expression of neurotransmitter receptors and to assess their role in cell survival and degeneration. The toxicity induced by N-methyl-d-aspartate (NMDA) in granule cells maintained under partially depolarizing conditions and in the presence of physiologic extracellular concentrations of Mg2+ was greatest for the neurons maintained for 14 days in vitro (DIV). However, following NMDA receptor activation neurons as young as 5 DIV exhibited increases in the concentration of intracellular free Ca2+ which were as large as those achieved with cells at 8–9 or 13–14 DIV. The less mature neurons exhibited a down-regulation of responses to increasing concentrations of NMDA and the more mature cells maintained elevated intracellular Ca2+ levels during the inter-stimulus periods. Immunochemical analyses of the expression of the NMDA receptor-associated proteins NMDAR1 and glutamatebinding protein (GBP) in granule cells indicated a developmental increase in both proteins, albeit the pattern of expression of NMDAR1 was the more complex. No definite correlation has yet been established between toxicity induced by NMDA and the expression of these two proteins. Finally, although the developmental expression of nitric oxide synthase, an enzyme that catalyzes the formation of the potentially neurotoxic radicals nitric oxide and superoxide anion, increased progressively with the maturation of neurons in culture, an inhibitor of this enzyme did not protect neurons from NMDA-induced toxicity. Therefore, the developmental changes in granule cells that lead to increased vulnerability following excessive activation of NMDA receptors are not yet completely defined.Special issue dedicated to Dr. Robert Balázs  相似文献   

10.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor. The glycine binding site of this subtype of ionotropic glutamate receptors is formed by the S1 and S2 regions of the NR1 subunit. Here, different S1S2 fusion proteins were expressed and purified from Escherichia coli cultures, and refolding protocols were established allowing the production of 30 mg of soluble S1S2 fusion protein from 1 liter bacterial culture. After affinity purification and renaturation, two of the fusion proteins (S1S2 and S1S2-V1) bound the competitive glycine site antagonist [3H]MDL105,519 with K(d) values of 9.35 and 3.9 nM, respectively. In contrast, with three other constructs (S1S2M, S1S2-V2, and -V3) saturable ligand binding could not be obtained. These results redefine the S1S2 domains required for high-affinity glycine binding. Furthermore, our high-affinity binding proteins may be used for the large-scale production of the glycine binding core region for future structural studies.  相似文献   

11.
The identification of structurally novel analogues of ketamine and phencyclidine (PCP), as NMDA receptor antagonists, with low to moderate potency at GluN2A and GluN2B receptors is discussed. In particular, some examples, such as compounds 6 and 10, shows decreased calculated lipophilicity, when compared to PCP, while retaining moderate activity. Moreover, the germinal aryl amino substituted lactam ring, as exemplified in compounds 7-10 and 11-13, constitutes a novel scaffold with potential application in the design of biologically active compounds.  相似文献   

12.
目的探讨NMDA受体激活引起的突触活动诱导Wnt非经典通路的活化。方法构建C57BL/6J胎鼠大脑皮层神经元原代培养体系,用NMDA处理神经元细胞,并结合Western blotting、双免疫荧光染色等技术,检测神经元细胞内Wnt非经典通路的相关蛋白的变化。结果免疫荧光染色显示成功建立了C57BL/6J胎鼠大脑皮层神经元体外培养体系,原代神经元细胞在体外培养10d生长良好,且纯度达90%;体外培养的神经元细胞内存在Wnt5a神经递质,经NMDA的刺激,发现Wnt非经典通路的两个标志性蛋白CaMKII和JNK的磷酸化水平显著增加,且Wnt非经典通路的一种受体Frizzled-5的蛋白表达水平也显著增加。进一步的研究显示,用NMDA竞争性抑制剂DAP5能够阻断NMDA引起的CaMKII和JNK蛋白的磷酸化水平的提高。结论 NMDA受体的激活会诱导Wnt非经典通路的活化。  相似文献   

13.
14.
Schizophrenia is a devastating mental illness that afflicts nearly 1% of the world’s population. Currently available antipsychotics treat positive symptoms, but are largely ineffective at addressing negative symptoms and cognitive dysfunction. Thus, improved pharmacotherapies that treat all aspects of the disease remain a critical unmet need. There is mounting evidence that links NMDA receptor hypofunction and the expression of schizophrenia, and numerous drug discovery programs have developed agents that directly or indirectly potentiate NMDA receptor-mediated neurotransmission. Several compounds have emerged that show promise for treating all symptom sub-domains in both preclinical models and clinical studies, and we will review recent developments in many of these areas.  相似文献   

15.
Early effects of experience on synaptic reorganization and behavior often involve activation of N-methyl-D -aspartate (NMDA) receptors. We have begun to explore the role of this glutamate-receptor subtype in the development of learned birdsong. Song learning in zebra finches occurs during a restricted period that coincides with extensive synaptic reorganization within neural regions controlling song behavior. In one brain region necessary for song learning, the lateral magnocellular nucleus of the anterior neostriatum (lMAN), NMDA receptor binding is twice as high at the onset of song learning as in adulthood. In the present study, we used quantitative autoradiography with the noncompetitive NMDA antagonist [3H]MK-801 to examine more closely the developmental decline in NMDA receptor binding within lMAN and found that it occurred gradually over the period of song learning and was not associated with a particular stage of the learning process. In addition, early isolation from conspecific song did not affect [3H]MK-801 binding in lMAN at 30, 60, or 80 days. Since behavioral studies confirmed that our isolate rearing conditions extended the sensitive period for song learning, we conclude that the normal developmental decline in overall NMDA receptor binding within lMAN does not terminate the capacity for song learning. Finally, early deafening, which prevents both stages of song learning, also did not affect [3H]MK-801 binding in lMAN at 80 days, indicating that the decline in NMDA receptor binding occurs in the absence of auditory experiences associated with song development. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
The effect of cigarette smoke on lipid peroxidation and antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and on the concentration of N-methyl-d-aspartate receptor (NMDAR) subunits 2A and 2B in the hippocampus of Sprague-Dawley rats exposed to cigarette smoke for 2h/day for a period of 4 weeks was determined. It was observed that NMDAR 2A and 2B concentrations in the hippocampus were enhanced in the case of animals exposed to cigarette smoke, whereas lipid peroxidation and antioxidant enzyme activities did not show any change as compared to control animals. The results of our study suggest that cigarette smoke induces NMDAR 2A and 2B expression in the hippocampus, and that this is not due to an increased lipid peroxidation, because cigarette smoke has no effect on lipid peroxidation and antioxidant enzyme activities in the hippocampus.  相似文献   

18.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

19.
Y Kloog  V Nadler  M Sokolovsky 《FEBS letters》1988,230(1-2):167-170
Binding of the labeled anticonvulsant drug [3H]dibenzocycloalkenimine (3H]MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its dissociation from the receptor at 25°C are slow processes, both of which follow first order kinetics (t1/270 and 180 min, respectively). Both reactions are markedly accelerated by glutamate and glycine (t1/22-8 and 4 min, respectively), which allow bimolecular association kinetics of the labeled drug with the receptors whereas equilibrium binding of [3H]MK-801 (Kd 2–4 nM) is hardly affected by glutamate and glycine. The data suggest that MK-801 acts as a steric blocker of the NMDA receptor channel. The competitive antagonist D-(−)-2-amino-5-phosphovaleric acid (AP-5) freezes the receptor in a state which precludes either binding of [3H]MK-801 to the receptor channel or its dissociation from it. These findings have therapeutic implications.  相似文献   

20.
Co-localization of activated microglia and damaged neurones seen in brain injury suggests microglia-induced neurodegeneration. Activated microglia release two potential neurotoxins, excitatory amino acids and nitric oxide (NO), but their contribution to mechanisms of injury is poorly understood. Using co-cultures of rat microglia and embryonic cortical neurones, we show that inducible NO synthase (iNOS)-derived NO aloneis responsible for neuronal death from interferon gamma (IFNgamma) +lipopolysaccharide (LPS)-activated microglia. Neurones remain sensitive to NO irrespective of maturation state but, whereas blocking NMDA receptor activation with MK801 has no effect on NO-mediated toxicity to immature neurones, MK801 rescues 60-70% of neurones matured in culture for 12 days. Neuronal expression of NMDA receptors increases with maturation in culture, accounting for increased susceptibility to excitotoxins seen in more mature cultures. We show that MK801 delays the death of more mature neurones caused by the NO-donor DETA/NO indicating that NO elicits an excitotoxic mechanism, most likely through neuronal glutamate release. Thus, similar concentrations of nitric oxide cause neuronal death by two distinct mechanisms: NO acts directly upon immature neurones but indirectly, via NMDA receptors, on more mature neurones. Our results therefore extend existing evidence for NO-mediated toxicity and show a complex interaction between inflammatory and excitotoxic mechanisms of injury in mature neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号