首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP cyclohydrolase I is the rate-controlling enzyme in the production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide (NO) synthase. Here we show that GTP cyclohydrolase I mRNA was present in unstimulated hepatocytes and was up-regulated 2- to 3-fold concurrently with iNOS induction induced in vivo by LPS injection and in vitro by stimulation with LPS and inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, and interferon-gamma. Hepatocyte GTP cyclohydrolase I enzyme activity increased 2-fold in vivo after LPS. This coinduction of GTP cyclohydrolase I resulted in increased total intracellular biopterin which supported induced NO synthesis. The addition of a GTP cyclohydrolase I inhibitor to the stimulated hepatocytes decreased intracellular biopterin levels and resulted in a decrease in NO production. The results show that GTP cyclohydrolase I is up-regulated by certain acute inflammatory conditions. Further, the results indicate that biopterin is essential as a cofactor for induced NO synthase activity in hepatocytes.  相似文献   

2.
Interleukin (IL)-1 beta-induced inhibition of glucose-stimulated insulin secretion in rat islets of Langerhans is mediated in part by nitric oxide (NO). The NO synthase cofactor 5,6,7,8-tetrahydrobiopterin (BH(4)) supports NO synthesis in many cell types and IL-1 beta-induced NO generation and inhibition of insulin secretion have been previously correlated with intracellular BH(4 )levels in rat insulinoma cells. Using rat islets and the beta cell line BRIN-BD11, we have investigated whether synthesis of BH(4) limits IL-1beta-induced NO generation and inhibition of glucose-induced insulin secretion. IL-1 beta-induced NO generation by BRIN cells and islets was reduced by 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of de novo BH(4) synthesis. Sepiapterin, the substrate for salvage pathway BH(4) synthesis, reversed this inhibitory effect of DAHP in islets but not BRIN cells. DAHP reversed IL-1 beta-induced inhibition of islet insulin secretion, an effect prevented by sepiapterin. We conclude that BH(4) generation is necessary for IL-1 beta-induced NO generation in rat islets and BRIN cells. While a contribution of non-NO mediators cannot be excluded, our results support the proposal that IL-1 beta-induced, NO-mediated inhibition of insulin secretion in rat islets is dependent on the NOS cofactor BH(4).  相似文献   

3.
We have previously reported that cultured murine brain endothelial cells (MBE) produce large quantities of nitric oxide (NO) after activation with interferon-gamma in combination with any of several immunoactivators including: bacterial endotoxin, tumor necrosis factor and interleukin-1. Since endothelial cells are the first example of a cell-type which may possess both a constitutive and an inducible type of NO synthase, it was of interest to compare the requirements of these two enzyme activities. Induction of NO synthesis in MBE by cytokines was abolished by the protein synthesis inhibitor, cycloheximide, and by 2,4-diamino-6-hydroxypyridine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo synthesis of tetrahydrobiopterin (THB). In the presence of DAHP, NO synthesis was restored by sepiapterin (SEP), a substrate for the alternative pathway of THB synthesis occurring via pterin salvage. Moreover, SEP increased NO synthesis to greater than 150% of control values, suggesting that THB availability is rate-limiting for NO synthesis by cytokine-induced MBE. Methotrexate, an inhibitor of the pterin salvage pathway of THB synthesis, completely reversed the stimulation of NO synthesis by sepiapterin. Thus, cytokine-induced MBE NO synthase appears to have an absolute requirement for THB as cofactor. In additional studies we found that NO synthesis by cytokine-activated MBE was inhibited by NG-monosubstituted arginine analogs with a rank-order of potency NH2 greater than CH3 greater than NO2, in contrast with the rank-order of NO2 greater than NH2 greater than CH3 previously described for inhibition of the constitutive endothelial cell enzyme. Using a kinetic assay for NO synthase activity, based on oxidation of myoglobin heme-iron, we have found that these rank orders of potency also apply to cytosol preparations of cytokine-induced and untreated endothelial cells, respectively. Further differences between constitutive and cytokine-induced NO synthase were observed with regard to calmodulin requirements. Whereas constitutive NO synthase was potently inhibited by the calmodulin antagonists mellitin and trifluoperazine, cytokine-induced NO synthase was unaffected. In summary, NO synthesis by cytokine-activated MBE is THB-dependent, calmodulin-independent and inhibited by NG-substituted arginine analogs with a rank-order profile distinct from that for untreated endothelial cells but identical to that for cytokine-activated macrophages.  相似文献   

4.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

5.
The cell-cycle progression of rat thymocytes from G0 through G1 to DNA synthesis is associated with a transient synthesis of H4biopterin, the concentration of which reaches a maximum at the time of S-phase entry and then decreases. This synthesis of H4biopterin is controlled by the specific activity of GTP cyclohydrolase I, which peaks in G1/S cells. In contrast, the catalytic activity of sepiapterin reductase remains constant throughout the cell-cycle. At G0 the steady state mRNA levels specific for GTP cyclohydrolase I and sepiapterin reductase, respectively, are below the limits of detection. Both accumulate as the thymocytes progress through the cell-cycle but lack cyclic down regulation. The data indicate that the variations in H4biopterin synthesis during the cell-cycle are caused by growth regulated increase in GTP cyclohydrolase I mRNA expression, with subsequent post-translational inactivation. This latter is likely due to the degree of enzyme phosphorylation.  相似文献   

6.
We examined the effect of the immunosuppressant, cyclosporin A (CsA) on the synthesis of tetrahydrobiopterin (BH4), a cofactor for nitric oxide (NO) synthase and a scavenger of reactive oxygen species (ROS), in mouse brain microvascular endothelial cells. Treatment with CsA increased the BH4 content and the expression of mRNA level of GTP cyclohydrolase I, the rate-limiting enzyme of BH4 synthesis. 2,4-Diamino-6-hydroxypyrimidine, an inhibitor of GTP cyclohydrolase I, strongly reduced the CsA-induced increase in BH4 content. Cycloheximide (CHX), a protein synthesis inhibitor, also reduced CsA-induced BH4 synthesis. These findings suggest that CsA stimulates BH4 synthesis via a de novo pathway with the induction of GTP cyclohydrolase I. Moreover, CsA-induced the mRNA level of the inducible type of NO synthase, and stimulated the L-citrulline formation from L-arginine, which is a marker for NO synthesis. The CsA-stimulated L-citrulline formation was attenuated by the co-treatment with GTP cyclohydrolase I inhibitor. The expression of the endothelial type of NO synthase was low under basal condition, and was not affected by the treatment with CsA. These findings suggest that increase in BH4 content induced by CsA is coupled with NO production by inducible type of NO synthase.  相似文献   

7.
Development of the pteridine pathway in the zebrafish, Danio rerio   总被引:1,自引:0,他引:1  
In the zebrafish, the peripheral neurons and the pigment cells are derived from the neural crest and share the pteridine pathway, which leads either to the cofactor tetrahydrobiopterin or to xanthophore pigments. The components of the pteridine pattern were identified as tetrahydrobiopterin, sepiapterin, 7-oxobiopterin, isoxanthopterin, and 2,4,7-trioxopteridine. The expression of GTP cyclohydrolase I activity during the first 24-h postfertilization, followed by 6-pyruvoyl-5,6,7,8-tetrahydropterin synthase and sepiapterin reductase, suggest an early supply of tetrahydrobiopterin for neurotransmitter synthesis in the neurons and for tyrosine supply in the melanophores. At 48-h postfertilization, sepiapterin formation branches off the de novo pathway of tetrahydrobiopterin synthesis. Sepiapterin, via 7,8-dihydrobiopterin and biopterin, serves as a precursor for the formation of 7-oxobiopterin, which may be further catabolized to isoxanthopterin and 2,4,7-trioxopteridine. Neither 7, 8-dihydrobiopterin nor biopterin is a substrate for xanthine oxidoreductase. In contrast, both of these compounds are oxidized at C-7 by a xanthine oxidase variant form, which is inactivated by KCN, but is insensitive to allopurinol. The oxidase and the dehydrogenase form of xanthine oxidoreductase as well as the xanthine oxidase variant have specific developmental patterns. It follows that GTP cyclohydrolase I, the formation of sepiapterin, and the xanthine oxidoreductase family control the pteridine pathway in the zebrafish.  相似文献   

8.
2,4-Diamino-6-hydroxypyrimidine (DAHP) is considered a specific inhibitor of BH(4) biosynthesis and is widely used in order to elucidate the possible biological function of BH(4) in various cells. In the present study, we found that both the synthesis of tetrahydrobiopterin (BH(4)) and expression of vascular cell adhesion molecule 1 (VCAM-1) were increased in human umbilical vein endothelial cells (HUVEC) treated with proinflammatory cytokines. Thus we examined the effects of DAHP to clarify whether BH(4) might be involved in the expression of VCAM-1 in HUVEC. DAHP reduced the levels of both BH(4) and VCAM-1 induced by TNF-alpha and IFN-gamma. However, the dose-response curves of DAHP for the suppression of the VCAM-1 level and that of BH(4) level were markedly different. Supplementation with sepiapterin failed to restore the depressed VCAM-1 level, although it completely restored the BH(4) level. Furthermore, DAHP significantly reduced the VCAM-1 level under the experimental conditions using TNF-alpha alone, which failed to induce BH(4) production. Taken together, these results indicate that DAHP inhibited the expression of VCAM-1 in a BH(4)-independent manner in HUVEC. In the present study, we also found that DAHP significantly suppressed the accumulation of cytokine-induced NF-kappaB (p65) in the nucleus as well as the mRNA levels of VCAM-1 and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme of BH(4) synthesis. The data obtained in this study suggest that DAHP reduced VCAM-1 and GTPCH protein synthesis at least partially via suppressing the NF-kappaB level in the nucleus of HUVEC.  相似文献   

9.
Tetrahydrobiopterin: biochemistry and pathophysiology   总被引:2,自引:0,他引:2  
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.  相似文献   

10.
This review describes pteridine biosynthesis and its relation to the differentiation of neural crest derivatives in zebrafish. During the embryonic development of these fish, neural crest precursor cells segregate into neural elements, ectomesenchymal cells and pigment cells; the latter then diversifying into melanophores, iridophores and xanthophores. The differentiation of neural cells, melanophores, and xanthophores is coupled closely with the onset of pteridine synthesis which starts from GTP and is regulated through the control of GTP cyclohydrolase I activity. De novo pteridine synthesis in embryos of this species increases during the first 72-h postfertilization, producing H4biopterin, which serves as a cofactor for neurotransmitter synthesis in neural cells and for tyrosine production in melanophores. Thereafter, sepiapterin (6-lactoyl-7,8-dihydropterin) accumulates as yellow pigment in xanthophores, together with 7-oxobiopterin, isoxanthopterin and 2,4,7-trioxopteridine. Sepiapterin is the key intermediate in the formation of 7-oxopteridines, which depends on the availability of enzymes belonging to the xanthine oxidoreductase family. Expression of the GTP cyclohydrolase I gene (gch) is found in neural cells, in melanoblasts and in early xanthophores (xanthoblasts) of early zebrafish embryos but steeply declines in xanthophores by 42-h postfertilization. The mechanism(s) whereby sepiapterin branches off from the GTP-H4biopterin pathway is currently unknown and will require further study. The surge of interest in zebrafish as a model for vertebrate development and its amenability to genetic manipulation provide powerful tools for analysing the functional commitment of neural crest-derived cells and the regulation of pteridine synthesis in mammals.  相似文献   

11.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 mg.kg(-1).day(-1)) to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats.  相似文献   

12.
This review describes pteridine biosynthesis and its relation to the differentiation of neural crest derivatives in zebrafish. During the embryonic development of these fish, neural crest precursor cells segregate into neural elements, ectomesenchymal cells and pigment cells; the latter then diversifying into melanophores, iridophores and xanthophores. The differentiation of neural cells, melanophores, and xanthophores is coupled closely with the onset of pteridine synthesis which starts from GTP and is regulated through the control of GTP cyclohydrolase I activity. De novo pteridine synthesis in embryos of this species increases during the first 72‐h postfertilization, producing H4biopterin, which serves as a cofactor for neurotransmitter synthesis in neural cells and for tyrosine production in melanophores. Thereafter, sepiapterin (6‐lactoyl‐7,8‐dihydropterin) accumulates as yellow pigment in xanthophores, together with 7‐oxobiopterin, isoxanthopterin and 2,4,7‐trioxopteridine. Sepiapterin is the key intermediate in the formation of 7‐oxopteridines, which depends on the availability of enzymes belonging to the xanthine oxidoreductase family. Expression of the GTP cyclohydrolase I gene (gch) is found in neural cells, in melanoblasts and in early xanthophores (xanthoblasts) of early zebrafish embryos but steeply declines in xanthophores by 42‐h postfertilization. The mechanism(s) whereby sepiapterin branches off from the GTP‐H4biopterin pathway is currently unknown and will require further study. The surge of interest in zebrafish as a model for vertebrate development and its amenability to genetic manipulation provide powerful tools for analysing the functional commitment of neural crest‐derived cells and the regulation of pteridine synthesis in mammals.  相似文献   

13.
Studies on the effect of ascorbic acid on inducible nitric oxide synthase (iNOS) activity are few and diverse, likely to be dependent on the species of cells. We investigated a role of ascorbic acid in iNOS induction and nitric oxide (NO) generation in mouse macrophage cell line RAW 264.7. Although interferon- (IFN-) gamma alone produced NO end products, ascorbic acid enhanced NO production only when cells were synergistically stimulated with IFN-gamma plus Escherichia coli lipopolysaccharide (LPS). Ascorbate neither enhanced nor decreased the expression of iNOS protein in RAW 264.7 cells, in contrast to the reports that ascorbic acid augments iNOS induction in a mouse macrophage-like cell line J774.1 and that ascorbate suppresses iNOS induction in rat skeletal muscle endothelial cells. Intracellular levels of tetrahydrobiopterin (BH4), a cofactor for iNOS, were increased by ascorbate in RAW 264.7 cells. However, ascorbate did not increase GTP cyclohydrolase I mRNA, the main enzyme at the critical steps in the BH4 synthetic pathway, expression levels and activity. Sepiapterin, which supplies BH4 via salvage pathway, more efficiently enhanced NO production if ascorbate was added. These data suggest that enhanced activation of iNOS by ascorbic acid is mediated by increasing the stability of BH4 in RAW 264.7 cells.  相似文献   

14.
Uncoupling of nitric oxide synthase (NOS) has been implicated in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). We hypothesized that inducible NOS (iNOS) plays a crucial role in LV remodeling after MI, depending on its coupling status. MI was created in wild-type, iNOS-knockout (iNOS(-/-)), endothelial NOS-knockout (eNOS(-/-)), and neuronal NOS-knockout (nNOS(-/-)) mice. iNOS and nNOS expressions were increased after MI associated with an increase in nitrotyrosine formation. The area of myocardial fibrosis and LV end-diastolic volume and ejection fraction were more deteriorated in eNOS(-/-) mice compared with other genotypes of mice 4 wk after MI. The expression of GTP cyclohydrolase was reduced, and tetrahydrobiopterin (BH(4)) was depleted in the heart after MI. Oral administration of sepiapterin after MI increased dihydrobiopterin (BH(2)), BH(4), and BH(4)-to-BH(2) ratio in the infarcted but not sham-operated heart. The increase in BH(4)-to-BH(2) ratio was associated with inhibition of nitrotyrosine formation and an increase in nitrite plus nitrate. However, this inhibition of NOS uncoupling was blunted in iNOS(-/-) mice. Sepiapterin increased capillary density and prevented LV remodeling and dysfunction after MI in wild-type, eNOS(-/-), and nNOS(-/-) but not iNOS(-/-) mice. N(ω)-nitro-L-arginine methyl ester abrogated sepiapterin-induced increase in nitrite plus nitrate and angiogenesis and blocked the beneficial effects of sepiapterin on LV remodeling and function. These results suggest that sepiapterin enhances angiogenesis and functional recovery after MI by activating the salvage pathway for BH(4) synthesis and increasing bioavailable nitric oxide predominantly derived from iNOS.  相似文献   

15.
Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 microm to 1 mm, 24 h) led to an up to 3-fold increase of intracellular tetrahydrobiopterin levels that was concentration-dependent and saturable at 100 microm. Accordingly, the effect of ascorbic acid on Ca(2+)-dependent formation of citrulline (co-product of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) was abolished when intracellular tetrahydrobiopterin levels were increased by coincubation of endothelial cells with sepiapterin (0.001-100 microm, 24 h). In contrast, ascorbic acid did not modify the pterin affinity of endothelial NOS, which was measured in assays with purified tetrahydrobiopterin-free enzyme. The ascorbate-induced increase of endothelial tetrahydrobiopterin was not due to an enhanced synthesis of the compound. Neither the mRNA expression of the rate-limiting enzyme in tetrahydrobiopterin biosynthesis, GTP cyclohydrolase I, nor the activities of either GTP cyclohydrolase I or 6-pyruvoyl-tetrahydropterin synthase, the second enzyme in the de novo synthesis pathway, were altered by ascorbate. Our data demonstrate that ascorbic acid leads to a chemical stabilization of tetrahydrobiopterin. This was evident as an increase in the half-life of tetrahydrobiopterin in aqueous solution. Furthermore, the increase of tetrahydrobiopterin levels in intact endothelial cells coincubated with cytokines and ascorbate was associated with a decrease of more oxidized biopterin derivatives (7,8-dihydrobiopterin and biopterin) in cells and cell supernatants. The present study suggests that saturated ascorbic acid levels in endothelial cells are necessary to protect tetrahydrobiopterin from oxidation and to provide optimal conditions for cellular NO synthesis.  相似文献   

16.
Alterations in tetrahydrobiopterin (BH4) levels have significant consequences in vascular pathophysiology. However, the mechanisms regulating BH4 remain poorly understood. The activity of GTP cyclohydrolase I (GTPCH-I), the first enzyme in BH4 biosynthesis, is controlled by protein levels, posttranslational modifications and interaction with GTPCH-I feedback regulatory protein (GFRP). This work examined the correlation between GTPCH-I protein levels and activity and changes in BH4 in human endothelial cells (HAECs) and adult rat cardiomyocytes (ARCM). Changes in BH4 were stimulated with LPS in HAECs and ARCM, and with hydrogen peroxide in HAECs only. Biopterin production by HAECs and ARCM were attained with concentrations of LPS >1 microg/ml and responses were nonlinear with respect to LPS concentrations. Western blot analysis demonstrated that induction of biopterin synthesis in HAECs and ARCM by LPS does not entail augmentation of constitutive GTPCH-I protein levels. However, LPS diminished GFRP mRNA, suggesting that disruption of GTPCH-I:GFRP complex enhances de novo biopterin synthesis. Conversely, treatment with hydrogen peroxide increased GTPCH-I and GFRP mRNA levels in HAECs while depleting BH4 and GSH, which was counteracted by catalase. This indicates that GFRP may override increases in GTPCH-I protein inhibiting enzyme activity. This conclusion is further supported by depletion of biopterin in cells transiently transfected with GFRP. Thus, allosteric regulation of GTPCH-I activity in the cardiovascular system maybe an important mechanism regulating BH4 levels through GFRP signaling.  相似文献   

17.
Tetrahydrobiopterin (BH4) is an essential cofactor for various enzymes in mammals. In vivo, it is synthesized from GTP via the three-step pathway of GTP cyclohydrolase I (GCHI), 6-pyruvoyl-tetrahydropterin synthase (PTPS) and sepiapterin reductase (SPR). BH4 is a medicine used to treat atypical hyperphenylalaninemia. It is currently synthesized by chemical means, which consists of many steps, and requires costly materials and complicated procedures. To explore an alternative microbial method for BH4 production, we utilized recombinant DNA technology to construct recombinant Escherichia coli (E. coli) strains carrying genes expressing GCHI, PTPS and SPR enzymes. These strains successfully produced BH4, which was detected as dihydrobiopterin and biopterin, oxidation products of BH4. In order to increase BH4 productivity we made further improvements. First, to increase the de novo GTP supply, an 8-azaguanine resistant mutant was isolated and an additional guaBA operon was introduced. Second, to augment the activity of GCHI, the folE gene from E. coli was replaced by the mtrA gene from Bacillus subtilis. These modifications provided us with a strain showing significantly higher productivity, up to 4.0 g of biopterin/L of culture broth. The results suggest the possibility of commercial BH4 production by our method.  相似文献   

18.
Inhibition of GTP cyclohydrolase I (GTPCH) has been used as a selective tool to assess the role of de novo synthesis of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) in a biological system. Toward this end, 2,4-diamino-6-hydroxypyrimidine (DAHP) has been used as the prototypical GTPCH inhibitor. Using a novel real-time kinetic microplate assay for GTPCH activity and purified prokaryote-expressed recombinant proteins, we show that potent inhibition by DAHP is not the result of a direct interaction with GTPCH. Rather, inhibition by DAHP in phosphate buffer occurs via an indirect mechanism that requires the presence of GTPCH feedback regulatory protein (GFRP). Notably, GFRP was previously discovered as the essential factor that reconstitutes inhibition of pure recombinant GTPCH by the pathway end product BH4. Thus, DAHP inhibits GTPCH by engaging the endogenous feedback inhibitory system. We further demonstrate that L-Phe fully reverses the inhibition of GTPCH by DAHP/GFRP, which is also a feature in common with inhibition by BH4/GFRP. These findings suggest that DAHP is not an indiscriminate inhibitor of GTPCH in biological systems; instead, it is predicted to preferentially attenuate GTPCH activity in cells that most abundantly express GFRP and/or contain the lowest levels of L-Phe.  相似文献   

19.
Adult rat cardiac myocytes typically display a phenotypic response to cytokines manifested by low or no increases in nitric oxide (NO) production via inducible NO synthase (iNOS) that distinguishes them from other cell types. To better characterize this response, we examined the expression of tetrahydrobiopterin (BH4)-synthesizing and arginine-utilizing genes in cytokine-stimulated adult cardiac myocytes. Intracellular BH4 and 7,8-dihydrobiopterin (BH2) and NO production were quantified. Cytokines induced GTP cyclohydrolase and its feedback regulatory protein but with deficient levels of BH4 synthesis. Despite the induction of iNOS protein, cytokine-stimulated adult cardiac myocytes produced little or no increase in NO versus unstimulated cells. Western blot analysis under nonreducing conditions revealed the presence of iNOS monomers. Supplementation with sepiapterin (a precursor of BH4) increased BH4 as well as BH2, but this did not enhance NO levels or eliminate iNOS monomers. Similar findings were confirmed in vivo after treatment of rat cardiac allograft recipients with sepiapterin. It was found that expression of dihydrofolate reductase, required for full activity of the salvage pathway, was not detected in adult cardiac myocytes. Thus, adult cardiac myocytes have a limited capacity to synthesize BH4 after cytokine stimulation. The mechanisms involve posttranslational factors impairing de novo and salvage pathways. These conditions are unable to support active iNOS protein dimers necessary for NO production. These findings raise significant new questions about the prevailing understanding of how cytokines, via iNOS, cause cardiac dysfunction and injury in vivo during cardiac inflammatory disease states since cardiac myocytes are not a major source of high NO production.  相似文献   

20.
An enzyme system was found in either crude homogenates of dialyzed extracts of liver, kidney, lung, and brain from Syrian golden hamsters that catalyzed the synthesis of radioactive 6(L-erythro-1',2'-dihydroxypropyl)pterin (biopterin) from [U-14C]6(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydropterin triphosphate (D-erythrolH2neopterin-PPP) preparation. The specific radioactivity of biopterin was found to be comparable to that of D-erythroH2neopterin-PPP. The enzyme system from hamster kidney was purified severalfold by fractionation with ammonium sulfate and with an Ultrogel AcA-34 column. It was demonstrated that (a) NADPH or NADAH was essential and that (b) Mg2+ was stimulatory for the enzymatic synthesis of biopterin from D-erythroH2-NEOPTERIN-PPP. Also GTP and nonphosphorylated neopterins were not converted to biopterin. Although 6-lactyl-7,8-dihydropterin (sepiapterin) was converted to biopterin in the presence of NADPH, sepiapterin was not detected from D-erythroH2neopterin-PPP in the absence of NADPH. A preliminary experiment was performed to identify dihydrobiopterin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号