首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iso-1-cytochromes c having lysine 32 replaced by leucine, glutamine, tyrosine, and tryptophan were prepared from strains of bakers' yeast, Saccharomyces cerevisiae, and chemically blocked at cysteine 107 with methyl methanethiolsulfonate to prevent dimerization. These modified ferricytochromes c were guanidine denatured, and the unfolding thermodynamics were determined by circular dichroism and fluorescence measurements. Thermal unfolding was also monitored by absorbance measurements. The guanidine denaturation midpoints for the altered proteins are smaller than the wild type, while the orders of stability from unfolding free energy changes are: Lys-32 (wild type) approximately Leu-32 approximately Gln-32 (circular dichroism), greater than Gln-32 (fluorescence) greater than Tyr-32 approximately Trp-32. Midpoints and differences in free energy changes for thermal unfolding parallel the fluorescence free energy changes for guanidine-induced unfolding. Thus, the blocked Leu-32 and Lys-32 proteins are equally stable with respect to both chemical and thermal denaturation. The reported data indicate that single replacements may significantly modify protein stability, and that substitution for an evolutionarily retained residue in normal cytochrome c structures does not always destabilize the protein. In addition, in vitro thermal stabilities approximately correlate with in vivo specific activities.  相似文献   

2.
T Tsuji  E T Kaiser 《Proteins》1991,9(1):12-22
A series of 37-residue analogues of the pseudo-EF hand in bovine calbindin D9K has been synthesized by the solid phase method. In the presence of calcium an alpha-helical induction of up to 44% was observed for the peptide with the native sequence with a Kd for calcium binding of 0.35 mM. A number of amino acid substitutions have been carried out to study the packing of the two alpha-helices based on the crystal structure of the entire protein. Three strategies were employed: (1) replacement of the Leu residues, which in the crystal structure do not contribute to the hydrophobic interaction between the two helices, by Gln or Ala in order to control the orientation of the helix packing, (2) stabilization of the individual helix by introducing a Glu-...Lys+ salt bridge or by changing the N-terminal charge to compensate for the helix dipole moment, and (3) introduction of a disulfide bond between the two helices to help the packing of the helices. The mutants with the substitution of (Leu-30, Leu-32) to (Gln-30, Gln-32), (Gln-30, Ala-32), and (Ala-30,Ala-32) designed based on the strategy 1 do not show any affinity for calcium and have low alpha-helicity. The Leu-30 to Lys-30 mutant designed to form a salt bridge between the side chains of Glu-26 and Lys-30 has an apparent Kd for calcium of 6.8 mM. Kd of the N-terminal acetylated and succinylated mutants are 0.41 and 0.45 mM, respectively, and no increase in the alpha-helix content relative to that of the natural sequence peptide is observed. The disulfide containing mutants, namely Tyr-13, Leu-31 to Cys-13, Cys-31 and Tyr-13, Leu-31 to Cys-13, hCys-31, show apparent Kd values of 0.93 and 2.1 mM, respectively. The former mutant shows the highest alpha-helix content among the peptides studied in the presence and absence of calcium. While it is difficult to construct an isolated and rigid helix-loop-helix motif with peptides of this size, introduction of a disulfide bond proved to be effective for this purpose.  相似文献   

3.
Monoamine oxidase (MAO) is a key enzyme responsible for the degradation of serotonin, norepinephrine, dopamine, and phenylethylamine. It is an outer membrane mitochondrial enzyme existing in two isoforms, A and B. We have recently generated 14 site-directed mutants of human MAO A and B, and we found that four key amino acids, Lys-305, Trp-397, Tyr-407, and Tyr-444, in MAO A and their corresponding amino acids in MAO B, Lys-296, Trp-388, Tyr-398, and Tyr-435, play important roles in MAO catalytic activity. Based on the polyamine oxidase three-dimensional crystal structure, it is suggested that Lys-305, Trp-397, and Tyr-407 in MAO A and Lys-296, Trp-388, and Tyr-398 in MAO B may be involved in the non-covalent binding to FAD. Tyr-407 and Tyr-444 in MAO A (Tyr-398 and Tyr-435 in MAO B) may form an aromatic sandwich that stabilizes the substrate binding. Asp-132 in MAO A (Asp-123 in MAO B) located at the entrance of the U-shaped substrate-binding site has no effect on MAO A nor MAO B catalytic activity. The similar impact of analogous mutants in MAO A and MAO B suggests that these amino acids have the same function in both isoenzymes. Three-dimensional modeling of MAO A and B using polyamine oxidase as template suggests that the overall tertiary structure and the active sites of MAO A and B may be similar.  相似文献   

4.
The His-44 and Met-164 residues of yeast cytochrome c1 are evolutionally conserved and regarded as heme axial ligands bonding to the fifth and sixth coordination sites of the heme iron, which is directly involved in the electron transfer mechanism. Oligonucleotide-directed mutagenesis was used to generate mutant forms of cytochrome c1 of yeast having amino acid replacements of the putative axial ligands of the heme iron. When a cytochrome c1-deficiency yeast strain was transformed with a gene encoding the Phe-44, Tyr-44, Leu-164, or Lys-164 protein, none of these transformants could grow on the non-fermentable carbon source. These results suggest that the His-44 and Met-164 residues have a critical role in the function of cytochrome c1 in vivo, most probably as axial ligands of the heme iron. Further analysis revealed that the mutant yeast cells with the Phe-44, Tyr-44, or Leu-164 protein lacked the characteristic difference spectroscopic signal of cytochrome c1. However, in the Lys-164 mutant cells, partial recovery of the cytochrome c1 signal was observed. Moreover, the Lys-164 protein retained a low but significant level of succinate-cytochrome c reductase activity in vitro. The possibility that the nitrogen of Lys-164 served as the sixth heme ligand is discussed in comparison with cytochrome f of a photosynthetic electron-transfer complex, in which lysine has been proposed to be the sixth ligand.  相似文献   

5.
The kinetics of reduction of wild type and several site-specific mutants of yeast iso-1 cytochrome c (Arg-13----Ile, Gln-16----Ser, Gln-16----Lys, Lys-27----Gln, Lys-72----Asp), both free and in 1:1 complexes with yeast cytochrome c peroxidase, by free flavin semiquinones have been studied. Intramolecular one-electron transfer from the ferrous cytochromes c to the H2O2-oxidized peroxidase at both low (8 mM) and high (275 mM) ionic strengths was also studied. The accessibility of the cytochrome c heme within the electrostatically stabilized complex and the rate constants for intramolecular electron transfer at both low and high ionic strength are highly dependent on the specific amino acids present at the protein-protein interface. Importantly, replacement by uncharged amino acids of Arg or Lys residues thought to be important in orientation and/or stabilization of the electron-transfer complex resulted in increased rates of electron transfer. In all cases, an increase in ionic strengths from 8 to 275 mM also produced increased intramolecular electron-transfer rate constants. The results suggest that the electrostatically stabilized 1:1 complex is not optimized for electron transfer and that by neutralization of key positively charged residues, or by an increase in the ionic strength thereby masking the ionic interactions, the two proteins can orient themselves to allow the formation of a more efficient electron-transfer complex.  相似文献   

6.
Oligonucleotide-directed mutagenesis of the yeast Saccharomyces cerevisiae was used to generate an abnormal iso-1-cytochrome c having an Arg-77 replacement of the normal Lys-77; this Lys-77 residue is evolutionarily conserved in most eukaryotic cytochromes c and is trimethylated in fungal and plant cytochromes c. Examination of strains having a single chromosomal copy of the gene encoding the Arg-77 protein indicated that the altered protein was synthesized at the normal rate and that it had normal or near normal activity in vivo. Examination of enzymatic activities in vitro with cytochrome b2, cytochrome c peroxidase, and cytochrome c oxidase indicated that the altered iso-1-cytochrome c has equal or enhanced catalytic efficiencies. Thus, replacement of the evolutionarily conserved residue Lys-77 produces no or only minor effects both in vivo and in vitro.  相似文献   

7.
The structural and folding requirements of eukaryotic cytochromes c have been investigated by determining the appropriate DNA sequences of a collection of 46 independent cyc 1 missense mutations obtained in the yeast Saccharomyces cerevisiae and by deducing the corresponding amino acid replacements that abolish function of iso-1-cytochrome c. A total of 33 different replacements at 19 amino acid positions were uncovered in this and previous studies. Because all of these nonfunctional iso-1-cytochromes c are produced at far below the normal level and because a representative number are labile in vitro, most of the replacements appear to be affecting stability of the protein or heme attachment. By considering the tertiary structure of related cytochromes c, the loss of function of most of the mutant iso-1-cytochromes c could be attributed to either replacements of critical residues that directly interact with the heme group or to replacements that disrupt the proper folding of the protein. The replacements of residues interacting with the heme group include those required for covalent attachment (Cys-19 and Cys-22), ligand formation (His-23 and Met-85), and formation of the immediate heme environment (Leu-37, Tyr-53, Trp-64, and Leu-73). Proper folding of the protein is prevented by replacements of glycine residues at sites that cannot accommodate side chains (Gly-11 and Gly-34); by replacements of residues with proline, which limit the torsion angle (Leu-14 and His-38); and by replacements apparently unable to direct the local folding of the backbone into the proper conformation (Pro-35, Tyr-72, Asn-75, Pro-76, Lys-84, Leu-99, and Leu-103). Even though most of the missense mutations occurred at sites corresponding to evolutionarily invariant or conserved residues, a consideration of the replacements in functional revertants indicates that the requirement for residues evolutionarily preserved is less stringent than commonly assumed.  相似文献   

8.
The a subunit of F1F0 ATP synthase contains a highly conserved region near its carboxyl terminus which is thought to be important in proton translocation. Cassette site-directed mutagenesis was used to study the roles of four conserved amino acids Gln-252, Phe-256, Leu-259, and Tyr-263. Substitution of basic amino acids at each of these four sites resulted in marked decreases in enzyme function. Cells carrying a subunit mutations Gln-252-->Lys, Phe-256-->Arg, Leu-259-->Arg, and Tyr-263-->Arg all displayed growth characteristics suggesting substantial loss of ATP synthase function. Studies of both ATP-driven proton pumping and proton permeability of stripped membranes indicated that proton translocation through F0 was affected by the mutations. Other mutations, such as the Phe-256-->Asp mutation, also resulted in reduced enzyme activity. However, more conservative amino acid substitutions generated at these same four positions produced minimal losses of F1F0 ATP synthase. The effects of mutations and, hence, the relative importance of the amino acids for enzyme function appeared to decrease with proximity to the carboxyl terminus of the a subunit. The data are most consistent with the hypothesis that the region between Gln-252 and Tyr-263 of the a subunit has an important structural role in F1F0 ATP synthase.  相似文献   

9.
Toxin gamma, a cardiotoxin from the venom of the cobra Naja nigricollis, was modified with acetic anhydride, and the derivatives were separated by cation-exchange and reverse-phase chromatography. Nine monoacetylated derivatives were obtained, and those modified at positions 1, 2, 12, 23, and 35 were readily identified by automated sequencing. The overall structure of toxin gamma, composed of three adjacent loops (I, II, and III) rich in beta-sheet, was not affected by monoacetylation as revealed by circular dichroic analysis. Trp-11, Tyr-22, and Tyr-51 fluorescence intensities were not affected by modifications at Lys-12 and Lys-35, whereas Trp-11 fluorescence intensity slightly increased when Lys-1 and Lys-23 were modified. The cytotoxic activity of toxin gamma to FL cells in culture was unchanged after modification at positions 1 and 2, whereas it was 3-fold lower after modification at Lys-23 and Lys-35. The derivative modified at Lys-12 was 10-fold less active than native toxin. Using two isotoxins, we found that substitutions at positions 28, 30, 31, and 57 did not change the cytotoxic potency of toxin gamma. A good correlation between cytotoxicity, lethality, and, to some extent, depolarizing activity on cultured skeletal muscle cells was found. In particular, the derivative modified at Lys-12 always had the lowest potency. Our data show that the site responsible for cytotoxicity, lethality, and depolarizing activity is not diffuse but is well localized on loop I and perhaps at the base of loop II. This site is topographically different from the AcChoR binding site of the structurally similar snake neurotoxins.  相似文献   

10.
The inner membrane protein CcmC (CytA) of Pseudomonas fluorescens ATCC17400, which has homologues in several bacteria and plant mitochondria, is needed for the biogenesis of cytochrome c . A CcmC-deficient mutant is also compromised in the production and utilization of pyoverdine, the high-affinity fluorescent siderophore. A topological model for CcmC, based on the analysis of alkaline phosphatase fusions, predicts six membrane-spanning regions with three periplasmic loops. Site-directed mutagenesis was used in order to assess the importance of some periplasm-exposed residues, conserved in all CcmC homologues, for cytochrome c biogenesis, and pyoverdine production/utilization. Despite the conservation of the residues His-61, Val-62 and Pro-63 in the first periplasmic loop, and Leu-184, His-185 and Gln-186 in the third periplasmic loop, their simultaneous replacement with Ala only partially affected cytochrome c biogenesis and pyoverdine production/utilization. Simultaneous replacements of residues Trp-115 and Gly-116 in the second periplasmic loop substantially affected pyoverdine production/utilization but not cytochrome c production. An Ala substitution of Asp-127, in the second periplasmic loop, resulted in decreased production of cytochrome c , slower growth in conditions of anaerobiosis and reduced pyoverdine production. On the other hand, a mutation in Trp-126, also in the second periplasmic loop, totally suppressed the production of cytochrome c , whereas it had no effect on the production and utilization of pyoverdine. These results show a differential involvement of amino acid residues in periplasmic domains of CcmC in cytochrome c biogenesis and pyoverdine production/utilization.  相似文献   

11.
A phage peptide library was used to select peptides interacting with virus-neutralizing monoclonal antibodies (mAb) 2G12 which recognize a discontinuous surface epitope of HIV-1 gp120. With the published X-ray data, gp120 regions involved in the antigenic determinant were predicted. Binding with mAb 2G12 was ascribed to Trh-297, Phe-383, Tyr-384, Arg-419, Ile-420, Thr-415, Leu-416, Pro-417, Lys-421, and Trp-112. Though distant in the gp120 sequence, these residues are close in space and form the 2G12 epitope on the gp120 surface.  相似文献   

12.
Class II major histocompatibility complex proteins bind peptides for presentation to T-cells as part of the immune response process. Monoclonal antibody MEM-265 recognizes the peptide-free conformation of the major histocompatibility complex class II protein HLA-DR1 through specific binding to an epitope contained between residues 50-67 of the beta-chain. In previous work using alanine scanning (1), we identified residues Leu-53, Asp-57, Tyr-60, Trp-61, Ser-63, and Leu-67 as essential for specific recognition by MEM-265. The spacing of these residues approximates a 3.5-residue repeat, suggesting that MEM-265 may recognize the epitope in an alpha-helical conformation. In the folded, peptide-loaded DR1 structure, the beta-chain residues 50-67 contain a kinked alpha-helical segment spanning Glu-52-Ser-63 (2). However, the conformation of this segment in the peptide-free form is unknown. We have used a new surface plasmon resonance approach in a SpotMatrix format to compare the kinetic rates and affinities for 18 alanine scanning mutants comprising epitope residues 50-67. In addition to the six essential residues described previously, we found two additional residues, Glu-52 and Gln-64, that contribute by enhancing MEM-265 binding. By contrast, mutation of either Gly-54 or Pro-56 to an alanine actually improved binding to MEM-265. In essentially all cases peptide substitutions that either improve or reduce MEM-265 recognition could be traced to differences in the dissociation rate (k off). The kinetic details of the present study support the presence of a structural component in the antigenic epitope recognized by MEM-265 in the peptide-free form of major histocompatibility complex II DR1 beta-chain.  相似文献   

13.
A 21-kD protein isolated earlier from potato tubers (Solanum tuberosum L.) has two isoforms, with pI 6.3 and 5.2, which were separated by fast protein ion-exchange chromatography on a Mono Q column. The primary structures of the two forms consisted of 187 and 186 amino acid residues. Both isoforms are composed of two polypeptide chains, designated A and B, linked by a single disulfide bond between Cys-146 of the A chain and Cys-7 of the B chain. The amino acid sequences of the A chains of the two forms, consisting of 150 residues each, differ in a single amino acid residue at position 52 (Val --> Ile), while the B chains, containing 37 and 36 residues, respectively, have substitutions at nine positions (Leu-8 --> Ser-8, Lys-25--Asp-26 --> Asn-25--Glu-26, Ile-31--Ser-32 --> Val-31--Leu-32, Lys-34--Gln-35--Val-36--Gln-37 --> Gln-34--Glu-35--Val-36). Both isoforms form stable inhibiting complexes with human leukocyte elastase and are less effective against chymotrypsin and trypsin.  相似文献   

14.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

15.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In order to evaluate the possible contributions of Lys-204, Tyr-224, Tyr-228, and His-307 in porcine kidney D-amino acid oxidase [EC 1.4.3.3] (DAO) to its catalytic function, we constructed four point mutant cDNAs encoding enzymes possessing Glu-204, Phe-224, Phe-228, and Leu-307 by oligonucleotide-directed in vitro mutagenesis. The four mutant cDNAs and the wild type cDNA could be expressed in vitro with similar efficiencies and about 200 ng of each enzyme protein was produced from 5 micrograms of the respective capped RNA. The electrophoretic mobilities of the in vitro synthesized mutant enzymes on SDS-polyacrylamide gel were almost identical with that of the wild type DAO, and the molecular weight was calculated to be 38,000. The Glu-204 and Phe-224 mutant DAOs showed comparable enzyme activities to that of the wild type enzyme, and were inhibited strongly by sodium benzoate, a potent competitive inhibitor of DAO. The kinetic parameters of the two mutant DAOs were also comparable to those of the wild type DAO. On the other hand, the Phe-228 and Leu-307 mutant DAOs showed no detectable activity. The results indicate that Tyr-228 and His-307 play important roles as to the constitution of the active site or participate in the reaction directly, while Lys-204 and Tyr-224 are not essential in the enzyme reaction.  相似文献   

17.
The complete covalent structure of a cytochrome P-450, form 4, isolated from liver microsomes of beta-naphthoflavone-induced rabbits was determined. The S-carboxyamidomethylated protein was cleaved with cyanogen bromide, endoproteinase Lys-C, and trypsin before and after succinylation. Selected peptides from CNBr digests of alkylated rabbit cytochrome P-450 forms 3a and 3c were also isolated and sequenced. Form 4 exhibited microheterogeneity due to the presence of several truncated forms. The existence of multiple NH2-terminal residues for form 4 was confirmed by the isolation and sequence analysis of the corresponding tryptic peptides. The predominant form contained 514 residues, corresponding to Mr 58,030. A peptide having Gly-232 and Gln-246 replaced by Ser and Asn residues, respectively, was also found in the isozyme preparation investigated here. The amino acid sequences of form 4 and selected peptide sequences from forms 3a and 3c were compared with the primary structures of forms 2 and 3b (previously determined in this laboratory). This comparison identified some 90 invariant residues. A cysteinyl residue at position 456, earlier reported as the heme-binding cysteine 436 (Heineman, F. S., and Ozols, J. (1982) J. Biol. Chem. 257, 14988-14999), was also present in forms 4, 3a, and 3c. Other single invariant residues identified were form 4/forms 2,3b, Trp-132/121, and His 270/252. The tyrosyl residues at positions 71/62 and 365/348 were also invariant. The latter is present in the "conserved segment" of the protein, residues 363/346 to 375/359, and may be involved in the substrate binding of cytochrome P-450. Also a lysyl residue, formerly identified by other laboratories to be involved in the electron transfer between the reductase and cytochrome P-450 form 2, was invariant in all five species. This lysyl residue corresponds to Lys-402 in form 4 or Lys-384 in the other forms.  相似文献   

18.
We have previously shown that an antigenic site in native lysozyme resides around the disulphide bridge 30-115 and incorporates Lys-33 and Lys-116 and one or both of Tyr-20 and Tyr-23. These residues fall in an imaginary line circumscribing part of the surface of the molecule and passing through the spatially adjacent residues Tyr-20, Arg-21, Tyr-23, Lys-116, Asn-113, Arg-114, Phe-34 and Lys-33. The identity of the site was confirmed by demonstrating that the synthetic peptide Tyr-Arg-Tyr-Gly-Lys-Asn-Arg-Gly-Phe-Lys (which does not exist in lysozyme but simulates a surface region of it), and an analogue in which glycine replaced Tyr-23, possessed remarkable immuno-chemical reactivity that accounted entirely for the expected reactivity of the site in native lysozyme. Tyr-23 is not part of the site, and its contribution was satisfied by a glycine spacer. The novel approach presents a powerful technique for the delineation of antigenic (and other binding) sites in native proteins and confirms that these need not always comprise residues in direct peptide linkage.  相似文献   

19.
Resolution of two distinct electron transfer sites on azurin   总被引:1,自引:0,他引:1  
O Farver  Y Blatt  I Pecht 《Biochemistry》1982,21(15):3556-3561
Pseudomonas aeruginosa azurin is stoichiometrically and specifically labeled upon reduction by Cr(II)aq ions, yielding a substitution-inert Cr(III) adduct on the protein surface. We investigated the effect of this chemical modification on the reactivity of azurin with two of its presumed partners in the redox system of the bacterium. The Pseudomonas cytochrome oxidase catalyzed oxidation of reduced native and Cr(III)-labeled azurin by O2 was found to be unaffected by the modification. The kinetics of the electron exchange reaction between native or Cr(III)-labeled azurin and cytochrome c551 were studied by the temperature-jump method. Though similar chemical relaxation spectra were observed for native and modified systems, they differ quantitatively. Analysis of the concentration dependences of the relaxation times and amplitudes showed that both obey the same mechanism but that the specific reaction rates of the Cr(III)-modified protein are attenuated. This decreased reactivity of Cr(III)-labeled azurin toward one of its physiological partners suggests the involvement of the labeled region in the electron transfer reaction with cytochrome c551. Furthermore, the presence of a second active site, involved in the reduction of cytochrome oxidase, is suggested by the results.  相似文献   

20.
Site-directed mutagenesis of smooth muscle myosin light chain kinase was applied to define its autoinhibitory domain. Mutants were all initiated at Leu-447 but contained varying lengths of C-terminal sequence. Those containing the complete C-terminal sequence to Glu-972 possessed kinase activities that were calmodulin-dependent. Removal of the putative inhibitory domain by truncation to Thr-778 resulted in generation of a constitutively active (calmodulin-independent) species. Thus, the inhibitory domain lies to the C-terminal side of Thr-778. Truncation to Lys-793 and to Trp-800 also resulted in constitutively active mutants, although the specific activity of the latter was less than the other mutants. None of the truncated mutants bound calmodulin. For each mutant, the Km values with respect to ATP and to the 20,000-dalton light chain were similar to values obtained with the native enzyme. The presence of the inhibitory domain was detected by activation of kinase activity following limited proteolysis with trypsin. Using this procedure, it was determined that the inhibitory domain was manifest only in the mutant truncated to Trp-800 and was absent from that ending at Lys-793. These results indicate that a critical region of the inhibitory domain is contained within the sequence Tyr-794 to Trp-800. This region overlaps with the calmodulin-binding site for five residues. Our assignment of the inhibitory sequence is consistent with autoinhibition via a pseudosubstrate domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号