首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anion binding to neutral and positively charged lipid membranes   总被引:2,自引:0,他引:2  
P M Macdonald  J Seelig 《Biochemistry》1988,27(18):6769-6775
Aqueous anion binding to bilayer membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was investigated by using deuterium and phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy. Only those anions that exhibit chaotropic properties showed significant binding to POPC membranes. A detailed investigation of thiocyanate binding to neutral POPC and to positively charged mixed POPC/dihexadecyldimethylammonium bromide (DHDMAB) (8:2 mol/mol) membranes revealed changes in the 2H NMR quadrupole splittings from POPC specifically deuteriated at either the alpha-segment or the beta-segment of the choline head group which were consistent with a progressive accumulation of excess negative charge at the membrane surface with increasing SCN- concentration. Both the 2H and 31P NMR spectra indicated the presence of fluid lipids in a bilayer configuration up to at least 1.0 M NaSCN with no indication of any phase separation of lipid domains. Calibration of the relationship between the change in the 2H NMR quadrupole splitting and the amount of SCN- binding provided thiocyanate binding isotherms. At a given SCN- concentration the positively charged membranes bound levels of SCN- 3 times that of the neutral membranes. The binding isotherms were analyzed by considering both the electrostatic and the chemical equilibrium contributions to SCN- binding. Electrostatic considerations were accounted for by using the Gouy-Chapman theory. For 100% POPC membranes as well as for mixed POPC/DHDMAB (8:2 mol/mol) membranes the thiocyanate binding up to concentrations of 100 mM was characterized by a partition equilibrium with an association constant of K approximately 1.4 +/- 0.3 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The nuclear magnetic quadrupole relaxation enhancement of 35Cl-, 81Br-, and 12I- anions on binding to human serum albumin has been studied under conditions of variable protein and anion concentration and also in the presence of simple inorganic, amphiphilic, and complex anions which compete with the halide ions for the protein anion binding sites. Two classes of anion binding sites with greatly different binding constans were identified. Experiments at variable halide ion concentration were employed to determin the Cl- and I- binding constants. By means of 35 Cl nuclear magnetic resonance (NMR) the relative affinity for different anions was determined by competition experiments for both the strong and the weak anion binding sites. Anion binding follows the sequence SO42- smaller than F- smaller than CH3COO- smaller than Ci- smaller Br- smaller than NO3- smaller than I- smaller than ClO4- smaller than SCN- smaller than Pt(CN)42- smaller than Au(CN)2- smaller than CH3(CH2)11OSO3- for the high affinity sites, and the sequence SO42- congruent to F- congruent to Cl- smaller CH3COO- smaller than NO3- smaller than Br- smaller than I- smaller than ClO4- smaller than SCN- for the low affinity sites. These series are nearly identical with the well-known lyotropic series. Consequently, those effects of anions on proteins described by the lyotropic series can be correlated with the affinities of the anions for binding to the protein. The data suggest that the physical nature of the interaction is the same for both types of biding sites, and that the differences in affinity between different binding sites must be explained in terms of tertiary structure. Analogous experiments performed using 127I- quadrupole relaxation gave results very similar to those obtained with 35Cl-. A comparison between the Cl-, Br- and I- ions revealed that, as a result of the increasing affinity for the weak anion binding sites in the series Cl- smaller than Br- smaller than I-, Cl- is much more useful as a probe for the specific anion binding sites than the other two halide ions. The findings with human serum albumin in this and other respects are probably of general relevance in studies of protein-anion interactions. In addition to competition experiments, the magnitude of the relaxation rate is also discussed. Line broadening not related to anion binding to the protein is found to be small. A comparison of transverse and longitudinal 35Cl relaxation rates gives a value for the quadrupole coupling constant of the high affinity sites in good agreement with a calculated coupling constant assuming anion binding to arginine.  相似文献   

3.
An approach is described that enables anion binding to liposomal membranes to be assessed from the resulting quenching of fluorescent lipid probes included in the membranes. Lipid derivatives such as anthrylvinyl-labeled phosphatidylcholine (ApPC) and methyl 4-pyrenylbutyrate (MPB) were used because they bear nonpolar fluorophores that localize in the bilayer close to polar heads. Association constants (K(a)) of iodide binding to bilayers of different composition were determined on the basis of direct quenching experiments. For anions that are non-quenchers or weak quenchers (thiocyanate, perchlorate and trichloroacetate), K(a) values were obtained from the data of competitive displacement of iodide by these anions. This approach increases possibilities of fluorescence studies of ion-membrane interactions.  相似文献   

4.
Streptococcus mutans BHT was grown in a synthetic medium containing radioactive thymidine to monitor deoxyribonucleic acid release. Kinetic experiments demonstrated that although lysozyme alone could not liberate deoxyribonucleic acid, cellular deoxyribonucleic acid was liberated from lysozyme-treated cells by addition of low concentrations of inorganic sodium salts. When the salts were tested for their ability to dislodge cell-bound tritiated lysozyme, the extent of the initial release of enzyme by individual anions correlated with the anion potency for deoxyribonucleic acid liberation (SCN- greater than ClO4- greater than I- greater than Br- greater than NO3- greater than Cl- greater than F-), although the total amount of lysozyme dislodged did not correspond directly with cell lysis. Differences in the effectiveness of anions (SCN-, HCO3-, Cl- and F-) in potentiating cell lysis could be enhanced or minimized by varying the lysozyme, anion, and bacterial cell concentrations. As the anion concentration was increased for each enzyme concentration and cell concentration, the lysis increased, in some cases markedly, until maximum levels of released deoxyribonucleic acid were attained. The maximum levels of lysis of SCN- and HCO3- were similar and were greater than those for Cl- and F-. In addition, the maximum levels were observed to increase for each of the anions as the concentration of lysozyme increased.  相似文献   

5.
Thiamine triphosphatase (TTPase) from membranes isolated from the main electric organ of E. electricus is activated about 8 fold by NO3-, I- and SCN- while SO42- is inhibitory. Activating anions shift the pH optimum of the enzyme from 5.0 to 8.0. The enzyme is irreversibly inactivated by low concentrations of 4,4'-diisothiocyano-2,2' disulfonic acid (DIDS), an inhibitor of anion transport. Anions protect from DIDS inactivation. These and other results suggest that the membrane-bound TTPase activity is tightly controlled, possibly through mechanisms involving anion transport.  相似文献   

6.
Monovalent inorganic anions showed an unexpected effect on the inhibition of trehalase (alpha, alpha-trehalose glucohydrolase, EC 3.2.1.28) by SH inhibitors. This phenomeon (deinhibition) was caused by monovalent anions, Cl-, Br-, I- and SCN- . F- and ClO4- showed partial deinhibition. Deinhibition was not caused by NO2- and SO4-. The effectiveness of the "active anions' in causing deinhibition was highly dependent on the anion size. Trehalase in the presence of mercuric chloride was "activated' by Cl-, and the activation was saturable. From the results of Dixon plots for trehalase at different concentrations of the "activator' (deinhibitor) and a constant concentration of the substrate, it can be seen that the activator and the inhibitor competed with each other. Thus, it is suggested that the activator and the inhibitor share a common binding site or bind very near each other. The Ki value for mercuric chloride was increased with increasing concentration of NaCl. Therefore, it might be essential to remove the "active anions' in order to determine the inhibitory effect and the Ki value of trehalase for SH inhibitors.  相似文献   

7.
The interaction of pyridinium salts (PS) with red blood cells and planar lipid membranes was studied. The aim of the work was to find whether certain cationic surfactant counterion influence its possible biological activity. The counterions studied were Cl-, Br-, I-, ClO4-, BF4- and NO3-. The model membranes used were erythrocyte and planar lipid membranes (BLM). At high concentration the salts caused 100% erythrocyte hemolysis (C100) or broke BLMs (CC). Both parameters describe mechanical properties of model membranes. It was found that the efficiency of the surfactant to destabilize model membranes depended to some degree on its counterion. In both, erythrocyte and BLM experiments, the highest efficiency was observed for Br-, the lowest for NO3-. The influence of all other anions on surfactant efficiency changed between these two extremities; that of chloride and perchlorate ions was similar. Some differences were found in the case of BF4- ion. Its influence on hemolytic possibilities of PS was significant while BLM destruction required relatively high concentration of this anion. Apparently, the influence of various anions on the destructive action of PS on the model membrane used may be attributed to different mobilities and radii of hydrated ions and hence, to different possibilities of particular anions to modify the surface potential of model membranes. This can lead to a differentiated interaction of PS with modified bilayers. Moreover, the effect of anions on the water structure must be taken into account. It is important whether the anions can be classified as water ordering kosmotropes that hold the first hydration shell tightly or water disordering chaotropes that hold water molecules in that shell loosely.  相似文献   

8.
Na+-dependent I- transport and I- counterflow were studied using phospholipid vesicles (P-vesicles) made of porcine thyroid plasma membranes and soybean phospholipid by sonication. 1) I- uptake by P-vesicles incubated in the presence of external Na+ was higher than that by P-vesicles incubated in choline+ instead of Na+. The vesicles exhibited Na+-dependent I- uptake. When P-vesicles were internally loaded with I- prior to incubation in Na+, a further increase in Na+-dependent I- uptake was observed, although the concentration of internal I- was very much higher than that outside. In the absence of external Na+, I- uptake by P-vesicles preloaded with I- was comparable to baseline uptake. 2) Na+-dependent I- uptake by P-vesicles not loaded with I- and enhanced Na+-dependent I- uptake by P-vesicles preloaded with I- were both inhibited by either of SCN- and ClO4- added outside the vesicles. 3) When P-vesicles were loaded with SCN- instead of I- and incubated in Na+, I- uptake by these vesicles was also higher than baseline Na+-dependent I- uptake. However, a ClO4- load did not result in an increase in I- uptake. These results indicate that Na+-dependent I- transport including Na+-dependent I- counterflow is specifically mediated by the thyroid I- carrier. SCN- - I- counterflow in addition to I- - I- counterflow occurs dependently on Na+, but ClO4- - I- counterflow does not.  相似文献   

9.
Horseradish peroxidase-catalysed oxidation of thiocyanate by hydrogen peroxide has been studied by 15N-NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pH values. The extent of the oxidation and the identity of the oxidized product of the thiocyanate has been investigated in the SCN-/H2O2/HRP system and compared with the corresponding data on the SCN-/H2O2/LPO system. The NMR studies show that (SCN)2 is the oxidation product of thiocyanate in the SCN-/H2O2/HRP system, and its formation is maximum at pH less than or equal to 4 and that the oxidation does not take place at pH greater than or equal to 6. Since thiocyanate does not bind to HRP at pH greater than or equal to 6 (Modi et al. (1989) J. Biol. Chem. 264, 19677-19684), the binding of thiocyanate to HRP is considered to be a prerequisite for the oxidation of thiocyanate. It is further observed that at [H2O2]/[SCN-] = 4, (SCN)2 decomposes very slowly back to thiocyanate. The oxidation product of thiocyanate in the SCN-/H2O2/LPO system has been shown to be HOSCN/OSCN- which shows maximum inhibition of uptake by Streptococcus cremoris 972 bacteria when hydrogen peroxide and thiocyanate are present in equimolar amounts (Modi et al. (1991) Biochemistry 30, 118-124). However, in case of HRP no inhibition of oxygen uptake by this bacteria was observed. Since thiocyanate binds to LPO at the distal histidine while to HRP near 1- and 8-CH3 heme groups, the role of distal histidine in the activity of SCN-/H2O2/(LPO, HRP) systems is indicated.  相似文献   

10.
To establish the agent(s) responsible for the activity of the lactoperoxidase (LPO)/SCN-/H2O2 system, the oxidation of thiocyanate with hydrogen peroxide, catalyzed by lactoperoxidase, has been studied by 15N NMR and optical spectroscopy at different concentrations of thiocyanate and hydrogen peroxide and at different pHs. The formation of hypothiocyanite ion (OSCN-) as one of the oxidation products correlated well with the activity of the LPO/SCN-/H2O2 system and was maximum when the concentrations of the H2O2 and SCN- were nearly the same and the pH was less than 6.0. At [H2O2]/[SCN-] = 1, OSCN- decomposed very slowly back to thiocyanate. When the ratio [H2O2]/[SCN-] was above 2, formation of CN- was observed, which was confirmed by 15N NMR and also by changes in the optical spectrum of LPO. The oxidation of thiocyanate by H2O2 in the presence of LPO does not take place at pH greater than 8.0. Since thiocyanate does not bind to LPO above this pH, the binding of thiocyanate to LPO is considered to be prerequisite for the oxidation of thiocyanate. Maximum inhibition of oxygen uptake by Streptococcus cremoris 972 bacteria was observed when hydrogen peroxide and thiocyanate were present in equimolar amounts and the pH was below 6.0.  相似文献   

11.
Anion-induced fluorescence quenching of lipid probes incorporated into the liposomal membrane was used to study the binding of anions to the lipid membrane. Lipid derivatives bearing nonpolar fluorophore located either in the proximity of the polar headgroups (anthrylvinyl-labelled phosphatidylcholine, ApPC; methyl 4-pyrenylbutyrate, MPB) or in the polar region (rhodamine 19 oleyl ester, OR19) of the bilayer were used as probes. The binding of iodide to the bilayers of different compositions was studied. Based on the anion-induced quenching of the fluorescence, the isotherm of adsorption of the quencher (iodide) to the membrane was plotted. For anions, which are non-quenchers or weak quenchers (thiocyanate, perchlorate or trichloroacetate), the binding parameters were obtained from the data of the competitive displacement of iodide by these anions. The association constants of the anion binding to the bilayer (Ka) were determined for the stoichiometry of 1 ion/1 lipid and also for the case of independent anion binding. At the physiological concentration of the salt, which does not bind noticeably to the membrane (150 mM NaCl), anion binding could be satisfactorily described by the Langmuir isotherm. The approach applied here offers new possibilities for the studies of ion-membrane interactions using fluorescent probes.  相似文献   

12.
S Modi  D V Behere  S Mitra 《Biochemistry》1989,28(11):4689-4694
The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.  相似文献   

13.
gamma-Aminobutyric acid (GABA) receptor-mediated 36chloride (36Cl-) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36Cl- uptake in a concentration-dependent manner with the following order of potency: Muscimol greater than GABA greater than piperidine-4-sulfonic acid (P4S)greater than 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP) = 3-aminopropanesulfonic acid (3APS) much greater than taurine. Both P4S and 3APS behaved as partial agonists, while the GABAB agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36Cl- uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36Cl- uptake was also dependent on the anion present in the media. The muscimol response varied in media containing the following anions: Br- greater than Cl- greater than or equal to NO3- greater than I- greater than or equal to SCN- much greater than C3H5OO- greater than or equal to ClO4- greater than F-, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl- channel.  相似文献   

14.
Three very unstable mutant forms of staphylococcal nuclease were used to quantitate the change in the apparent equilibrium constant for reversible denaturation (Kapp) as a function of denaturant concentration for a variety of different denaturing solutes. The value of this equilibrium constant in the absence of denaturant (Kapp,0) was determined by renaturation of the mutant proteins with a combination of glycerol and calcium ion, the latter of which binds at the active site in the native conformation. Because Kapp,0 fell in the easily measurable range between 0.1 and 1, the change in Kapp, and thus the change in free energy (delta Gapp), at very low concentrations of denaturants could be accurately measured. With guanidine hydrochloride (GuHCl), the rate of change of the apparent free energy of denaturation with respect to denaturant concentration (d(delta Gapp)/dCGuHCl or mGuHCl) was found to be remarkably constant down to zero denaturant concentration, even though this value was different for each of the three proteins. Unlike GuHCl, urea exhibited a slightly reduced value of d delta Gapp/dCurea at low concentrations. Results with a number of thiocyanate, perchlorate, and iodide salts confirmed that the Hofmeister series holds for concentrations below 0.1 M; that is, with regard to efficacy as a denaturant SCN- greater than ClO4- greater than I- and Li+,NH4+ greater than Na+,K+. However, all of the chaotropic salts analyzed exhibited markedly increased values of d(delta Gapp)/dCsalt at concentrations below 0.2 M. One possible explanation for these large deviations from a linear relationship between delta Gapp and salt concentration is that weak binding or adsorption of chaotropic anions is occurring at a saturable number of sites in hydrophobic regions of the denatured state.  相似文献   

15.
Efflux of preloaded I- from the thyroid induced by externally added I- was studied using a biological model of the thyroid I- transport system. Phospholipid vesicles (P-vesicles) made from thyroid plasma membranes and soybean phospholipids were capable of accumulating I- in the presence of external Na+. P-vesicles incubated in 136 mM Na+ containing 0.9 microM I- with 125I- for 2 min accumulated I- so that the I- concentration in the vesicles became about 2 microM. Addition of 5-20 microM stable I- to the incubation mixture at 2 min incubation resulted in a dose-dependent decrease in previously loaded 125I- in the vesicles. In other words, a dose-dependent increase in efflux of preloaded 125I- was observed. While the efflux occurred, Na+-dependent I- influx into P-vesicles was preserved. When 2 mM ClO4-, a specific inhibitor of Na+-dependent I- influx, was added together with 10 microM I-, the external I- failed to diminish preloaded 125I- in P-vesicles. The 125I- efflux did not occur when a large amount of stable I- entered P-vesicles independently of Na+ in the presence of ClO4-. Similar 125I- efflux induced by externally added 5 microM SCN- was also blocked by simultaneously added ClO4-. These observations suggest that such I- efflux from the thyroid is a certain type of uphill I- transport which is closely related to Na+-dependent I- transport and that ClO4- and SCN- act on a common site of the I- transport system.  相似文献   

16.
To understand the nature of the transmission process of excitation- contraction (EC) coupling, the effects of the anion perchlorate were investigated on the voltage sensor (dihydropyridine receptor, DHPR) and the Ca release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum (SR). The molecules, from rabbit skeletal muscle, were either separated in membrane vesicular fractions or biochemically purified so that the normal EC coupling interaction was prevented. Additionally, the effect of ClO4- was investigated on L-type Ca2+ channel gating currents of guinea pig ventricular myocytes, as a native DHPR not in the physiological interaction of skeletal muscle. At 20 mM, ClO4- had minor effects on the activation of ionic currents through Ca channels from skeletal muscle transverse tubular (T) membranes fused with planar bilayers: a +7-mV shift in the midpoint voltage, V, with no change in kinetics of activation or deactivation. This is in contrast with the larger, negative shift that ClO4- causes on the distribution of intramembrane charge movement of skeletal muscle. At up to 100 mM it did not affect the binding of the DHP [3H]PN200-110 to triad-enriched membrane fractions (TR). At 8 mM it did not affect the kinetics or the voltage distribution of gating currents of Ca channels in heart myocytes. These negative results were in contrast to the effects of ClO4- on the release channel. At 20 mM it increased several-fold the open probability of channels from purified RyR incorporated in planar bilayers and conducting Ba2+, an effect seen on channels first closed by chelation of Ca2+ or by the presence of Mg2+. It significantly increased the initial rate of efflux of 45Ca2+ from TR vesicles (by a factor of 1.75 at 20 mM and 4.5 at 100 mM). ClO4- also increased the binding of [3H]ryanodine to TR fractions. The relative increase in binding was 50-fold at the lowest [Ca2+] used (1 microM) and then decayed to much lower values as [Ca2+] was increased. The increase was due entirely to an increase in the association rate constant of ryanodine binding. The chaotropic ions SCN- and I- increased the association rate constant to a similar extent. The binding of ryanodine to purified RyR protein reconstituted into liposomes had a greater affinity than to TR fractions but was similarly enhanced by ClO4-. The reducing agent dithiothreitol (5 mM) did not reduce the effect of ClO4- , and 5% polyethylene glycol, with an osmolarity equivalent to 20 mM ClO4-, did not change ryanodine binding.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Chaotropic anions (ions that favour transfer of apolar groups to water) increased bicuculline inhibition of 3H-γ-aminobutyric acid binding to bovine retinal membranes as previously reported for rat forebrain membranes. The increased bicuculline inhibition was reversible when the chaotropic anion was removed thus ruling out the possibility that ‘endogenous regulators’ were being removed by the chaotropic anions. Another possible explanation for the enhanced bicuculline inhibition is an increase in the solubility of bicuculline, an organic compound that is sparingly soluble in water; however, when bicuculline-methiodide, a more water soluble form of bicuculline was used, no difference was noted in this enhancement.Although the chaotropic anions temporarily increase the bicuculline inhibition of γ-aminobutyric acid binding, they do not increase 3H-γ-aminobutyric acid receptor binding as previously suggested. Thiocyanate or perchlorate have no effect on 3H-γ-aminobutyric acid receptor binding to rat forebrain or cerebellar membranes. Although thiocyanate slightly inhibits γ-aminobutyric acid receptor binding to bovine retinal membranes, perchlorate has no effect. The previous observation that sodium perchlorate enhanced γ-aminobutyric acid binding in bovine retina was due to the enhancement of sodium-dependent binding to a nipecotic acid-sensitive binding site (perhaps an uptake site).The mechanism of action of chaotropic anions in vitro on γ-aminobutyric acid binding may be through an alteration in the interaction of the receptor with the antagonists, bicuculline or bicuculline-methiodide, but is not through the removal of a component that blocks the binding site or regulates the receptor's properties, as evidenced by the reversibility of the chaotropic anion effect and the lack of effect on agonist binding.  相似文献   

18.
The effect of foreign anions on transepithelial potential difference and transepithelial input conductance was studied in the isolated perfused Necturus kidney. Two microelectrodes (recording and current-injecting) were inserted into the lumen of single proximal tubules and the peritubular perfusate was shifted reversibly for 30-60 sec from a physiologic Ringer's solution to a test solution in which chloride was replaced isosmotically by a foreign anion. The permeability sequence, obtained by potential measurements, was: lactate less than glutamate less than gluconate less than pyruvate less than benzene sulfonate less than or equal to acetate less than or equal to F less than propionate less than BrO3 less than formate less than ClO3 less than Cl than ClO4 less than I less than or equal to Br less than NO3 less than SCN. Transepithelial conductance decreased when the tissue was perfused with anions less permeable than chloride but the conductance sequence was different from the permeability sequence. Such discrepancies were more pronounced during perfusion with hyperpolarizing anions; ClO4 and I- (both more permeable than chloride) produced an important decrease in transepithelial conductance, followed by incomplete reversibility when the perfusion was shifted again to chloride Ringer's. The results are best explained by the presence of weak positive fixed charges, governing anion permeation, at the shunt pathway of the proximal tubule. An analysis of the data allows tentative estimates of shape and size of the sites.  相似文献   

19.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

20.
Two hypotheses have recently been proposed for the thiocyanate inhibition of gastric acid secretion--a protonophore mechanism and an uncoupling model. The mechanistic aspects for the latter scheme have been examined on the following basis: capability of generating verifiable predictions, supporting evidence that is unambiguous, and compatibility with experimental realities. Gastric microsomes bind 5 nmol of SCN-/mg, and a "pure" and highly active fraction of H+,K+-ATPase prepared from gastric microsomes binds about 15 nmol of SCN-/mg. The affinity of SCN- binding to gastric microsomes changes from 10 to 25 mM in the presence of 20 mM K+ suggesting competition between K+ and SCN-. Potassium also displaces the bound SCN- from "pure" H+,K+-ATPase with a Ki of about 25 mM. Of the cations tested--Tl+, K+, Rb+, Cs+, NH4+, Na+, and Li+--Tl+ was the most effective in displacing bound SCN- while Na+ and Li+ were without effect. The effects of anions such as Cl-, NO3-, and gluconate were found to be nonspecific and absolutely dependent on K+ as cocation. Sulfate and OCN-, on the other hand, showed an ability to displace SCN- as both K+ and Na+ salts. For SO4(-2) the K+ form was much more effective than the Na+ salt. Besides these antagonistic effects of K+ and congeners with the H+,K+-ATPase-bound SCN-, a competition between K+ and SCN- was also observed at the level of gastric K+-stimulated pNPPase reaction. The effects of SCN- and two other unrelated anions, F- and NO2-, on artificial delta pH across the microsomal vesicles exhibited a lack of appreciable change up to 5 mM and a small (about 13%) reduction between 10 and 20 mM. However, a combination of CCCP and nigericin or valinomycin completely abolished the delta pH under identical conditions. The present data in conjunction with other reports suggest that the proton impediment model best explains the gastric antisecretory effects of SCN-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号