首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shpak ED  Lakeman MB  Torii KU 《The Plant cell》2003,15(5):1095-1110
Arabidopsis ERECTA, a Leu-rich repeat receptor-like Ser/Thr kinase (LRR-RLK), regulates organ shape and inflorescence architecture. Here, we show that a truncated ERECTA protein that lacks the cytoplasmic kinase domain (DeltaKinase) confers dominant-negative effects when expressed under the control of the native ERECTA promoter and terminator. Transgenic plants expressing DeltaKinase displayed phenotypes, including compact inflorescence and short, blunt siliques, that are characteristic of loss-of-function erecta mutant plants. The DeltaKinase fragment migrated as a stable approximately 400-kD protein complex in the complete absence of the endogenous ERECTA protein and significantly exaggerated the growth defects of the null erecta plants. A functional LRR domain of DeltaKinase was required for dominant-negative effects. Accumulation of DeltaKinase did not interfere with another LRR-RLK signaling pathway (CLAVATA1), which operates in the same cells as ERECTA but has a distinct biological function. Both the erecta mutation and DeltaKinase expression conferred a lesser number of large, disorganized, and expanded cortex cells, which are associated with an increased level of somatic endoploidy. These findings suggest that functionally redundant RLK signaling pathways, including ERECTA, are required to fine-tune the proliferation and growth of cells in the same tissue type during Arabidopsis organogenesis.  相似文献   

3.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules in Arabidopsis. The largest group of RLKs is the leucine-rich repeat (LRR) class that has been described to function in development and defense. Of these, CLAVATA1 (CLV1) and ERECTA (ER) receptors function in maintaining shoot meristem homeostasis and organ growth, but LRR RLKs with similar function in the root remain unknown. For the interaction of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis the involvement of LRR RLKs has not been demonstrated. A set of homozygous T-DNA insertion lines mutated in LRR RLKs was investigated to assess the potential role of these receptors in root meristem maintenance and compatibility. One mutant line, rlk902, was discovered that showed both reduced root growth and resistance to downy mildew in a recessive manner. The phenotypes of this mutated line could not be rescued by complementation, but are nevertheless linked to the T-DNA insertion. Microarray studies showed that gene expression spanning a region of approximately 84 kb upstream of the mutated gene was downregulated. The results suggest T-DNA mediated trans-repression of multiple genes upstream of the RLK902 locus links both phenotypes.  相似文献   

4.
5.
Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined.  相似文献   

6.
7.
Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.  相似文献   

8.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules. We characterized two highly homologous RLK genes, RLK902 and RKL1, in Arabidopsis. RLK902 and RKL1 showed a 75% amino acid sequence identity over their entire regions. In the RLK902 pro::GUS transgenic lines, GUS activity was strong in the root tips, lateral root primordia, stipules, and floral organ abscission zones, while the RKL1 promoter activity was dominant in the stomata cells, hydathodes and trichomes of young rosette leaves, and floral organ abscission zones. Neither the rlk902 mutant line, rkl1 mutant line nor rlk902/rkl1 double-knockout mutant line showed any significant phenotypes under normal growth conditions. These results suggest that RLK902 and RKL1 might mediate the signal transduction pathway in which at least one other complementary signaling pathway to these two RLKs might exist.  相似文献   

9.
Li S  Liu Y  Zheng L  Chen L  Li N  Corke F  Lu Y  Fu X  Zhu Z  Bevan MW  Li Y 《The New phytologist》2012,194(3):690-703
? Control of organ size and shape by cell proliferation and cell expansion is a fundamental developmental process, but the mechanisms that set the size and shape of determinate organs are largely unknown in plants. ? Molecular, genetic, cytological and biochemical approaches were used to characterize the roles of the Arabidopsis thaliana G protein γ subunit (AGG3) gene in organ growth. ? Here, we describe A. thaliana AGG3, which promotes petal growth by increasing the period of cell proliferation. Both the N-terminal region and the C-terminal domains of AGG3 are necessary for the function of AGG3. By contrast, analysis of a series of AGG3 derivatives with deletions in specific domains showed that the deletion of any of these domains cannot completely abolish the function of AGG3. The GFP-AGG3 fusion protein is localized to the plasma membrane. The predicted transmembrane domain plays an important role in the plasma membrane localization of AGG3. Genetic analyses revealed that AGG3 action requires a functional G protein α subunit (GPA1) and G protein β subunit (AGB1). ? Our findings demonstrate that AGG3, GPA1 and AGB1 act in the same genetic pathway to influence organ size and shape in A. thaliana.  相似文献   

10.
Leucine-rich repeat receptor-like protein kinases (LRR RLKs) represent the largest group of Arabidopsis RLKs with approximately 235 members. A minority of these LRR RLKs have been assigned to diverse roles in development, pathogen resistance and hormone perception. Using a reverse genetics approach, a collection of homozygous T-DNA insertion lines for 69 root expressed LRR RLK genes was screened for root developmental defects and altered response after exposure to environmental, hormonal/chemical and abiotic stress. The obtained data demonstrate that LRR RLKs play a role in a wide variety of signal transduction pathways related to hormone and abiotic stress responses. The described collection of T-DNA insertion mutants provides a valuable tool for future research into the function of LRR RLK genes.  相似文献   

11.
12.
Mechanisms that govern the size of plant organs are not well understood but believed to involve both sensing and signaling at the cellular level. We have isolated loss-of-function mutations in the four genes comprising the transmembrane kinase TMK subfamily of receptor-like kinases (RLKs) in Arabidopsis. These TMKs have an extracellular leucine-rich-repeat motif, a single transmembrane region, and a cytoplasmic kinase domain. While single mutants do not display discernable phenotypes, unique double and triple mutant combinations result in a severe reduction in organ size and a substantial retardation in growth. The quadruple mutant displays even greater severity of all phenotypes and is infertile. The kinematic studies of root, hypocotyl, and stamen filament growth reveal that the TMKs specifically control cell expansion. In leaves, TMKs control both cell expansion and cell proliferation. In addition, in the tmk double mutants, roots and hypocotyls show reduced sensitivity to applied auxin, lateral root induction and activation of the auxin response reporter DR5: GUS. Thus, taken together with the structural and biochemical evidence, TMKs appear to orchestrate plant growth by regulation of both cell expansion and cell proliferation, and as a component of auxin signaling.  相似文献   

13.
14.
Functional analysis of receptor-like kinases in monocots and dicots   总被引:2,自引:0,他引:2  
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.  相似文献   

15.
Feng G  Qin Z  Yan J  Zhang X  Hu Y 《The New phytologist》2011,191(3):635-646
? The growth of a plant organ to its characteristic size is regulated by an elaborate developmental program involving both internal and external signals. Here, we identify a novel Arabidopsis gene, ORGAN SIZE RELATED1 (OSR1), that is involved in regulation of organ growth and overall organ size. ? A combination of genetic, cytological and molecular approaches was used to characterize the expression profile, subcellular localization and roles of OSR1 during organ growth. ? Ectopic expression of OSR1 in Arabidopsis resulted in enlarged organs, as a consequence of increases in both cell number and cell size. OSR1 shares a conserved OSR domain with ARGOS and ARGOS-LIKE (ARL), which is sufficient for their functions in promoting organ growth. OSR1 is a plant hormone-responsive gene and appears to act redundantly with ARGOS and ARL during organ growth. The OSR proteins are localized to the endoplasmic reticulum. ? Our results suggest that three co-evolved members of the OSR family may act coordinately to orchestrate growth signals and cell proliferation and expansion, thereby affecting organ growth and final organ size.  相似文献   

16.
Receptor-like protein kinases (RLKs) are transmembrane proteins crucial for cell-to-cell and cell-to-environment communications. The extracellular domain of a RLK is responsible for perception of a specific extracellular ligand to trigger a unique intercellular signaling cascade, often via phosphorylation of cellular proteins. The signal is then transduced to the nucleus of a cell where it alters gene expression. There are more than 610 RLKs in Arabidopsis thaliana, only a handful of them have been functionally characterized. This review focuses on recent advances in our understanding of a small group of RLKs named somatic embryogenesis receptor-like protein kinases (SERKs). SERKs act as coreceptors in multiple signaling pathways via their physical interactions with distinct ligand-binding RLKs.  相似文献   

17.
18.
Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.  相似文献   

19.
《遗传学报》2009,36(1)
Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.  相似文献   

20.
The size of seeds and organs is coordinately determined by cell proliferation and cell expansion, but the mechanisms that set final seed and organ size are largely unknown in plants. In a recent study, we have demonstrated that the plant specific G protein γ subunit (AGG3) promotes seed and organ growth by increasing the period of proliferative growth in Arabidopsis. AGG3 is localized in plasma membrane and interacts with the G protein β subunit (AGB1). Homologs of AGG3 in rice (GS3 and DEP1/qPE9–1) have been identified as important quantitative trait loci for seed size and yield. However, rice GS3 and DEP1 influence seed and organ growth by restricting cell proliferation. Here, we discuss the possible molecular mechanisms by which Arabidopsis AGG3 and its rice homologs GS3 and DEP1 control seed and organ size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号