首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of catalase in hydrogen peroxide resistance in Schizosaccharomyces pombe was investigated. A catalase gene disruptant completely lacking catalase activity is more sensitive to hydrogen peroxide than the parent strain. The mutant does not acquire hydrogen peroxide resistance by osmotic stress, a treatment that induces catalase activity in the wild-type cells. The growth rate of the disruptant is not different from that of the parent strain. Additionally, transformed cells that overexpress the catalase activity are more resistant to hydrogen peroxide than wildtype cells with normal catalase activity. These results indicate that the catalase of S. pombe plays an important role in resistance to high concentrations of hydrogen peroxide but offers little in the way of protection from the hydrogen peroxide generated in small amounts under normal growth conditions.  相似文献   

2.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H(2)O(2)) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60±20% and 20±15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

3.
Brain mitochondria are not only major producers of reactive oxygen species but they also considerably contribute to the removal of toxic hydrogen peroxide by the glutathione (GSH) and thioredoxin-2 (Trx2) antioxidant systems. In this work we estimated the relative contribution of both systems and catalase to the removal of intrinsically produced hydrogen peroxide (H2O2) by rat brain mitochondria. By using the specific inhibitors auranofin and 1-chloro-2,4-dinitrobenzene (DNCB), the contribution of Trx2- and GSH-systems to reactive oxygen species (ROS) detoxification in rat brain mitochondria was determined to be 60 ± 20% and 20 ± 15%, respectively. Catalase contributed to a non-significant extent only, as revealed by aminotriazole inhibition. In digitonin-treated rat hippocampal homogenates inhibition of Trx2- and GSH-systems affected mitochondrial hydrogen peroxide production rates to a much higher extent than the endogenous extramitochondrial hydrogen peroxide production, pointing to a strong compartmentation of ROS metabolism. Imaging experiments of hippocampal slice cultures showed on single cell level substantial heterogeneity of hydrogen peroxide detoxification reactions. The strongest effects of inhibition of hydrogen peroxide removal by auranofin or DNCB were detected in putative interneurons and microglial cells, while pyramidal cells and astrocytes showed lower effects. Thus, our data underline the important contribution of the Trx2-system to hydrogen peroxide detoxification in rat hippocampus. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.  相似文献   

5.
A mixture of chloramines and hydrogen peroxide emits light. It was found that the reaction between taurine monochloramine and hydrogen peroxide is very slow. The stoichiometry of the reaction is 1:1 and taurine is detected as one of the products. The chlorinated proteins and bacteria, containing N-Cl groups, when reacting with hydrogen peroxide, are more effective in emitting light than low-molecular chloramines. Luminol enhances considerably light yield of the chloramine-hydrogen peroxide reaction. The chloramine-H2O2 reaction may account for light emitted by neutrophils during phagocytosis.  相似文献   

6.
We examined the response to hydrogen peroxide of two L5178Y (LY) sublines which are inversely cross-sensitive to hydrogen peroxide and X-rays: LY-R cells are radio-resistant and hydrogen peroxide-sensitive, whereas LY-S cells are radiosensitive and hydrogen peroxide-resistant. Higher initial DNA breaks and higher iron content (potentially active in the Fenton reaction) were found in the hydrogen peroxide sensitive LY-R cells than in the hydrogen peroxide resistant LY-S cells, whereas the antioxidant defence of LY-R cells was weaker. In particular, catalase activity is twofold higher in LY-S than in LY-R cells. The content of monobromobimane-reactive thiols is 54% higher in LY-S than in LY-R cells. In contrast, the activity of glutathione peroxidase (GPx) is about two times higher in LY-R than in LY-S cells; however, upon induction with selenium the activity increases 15.6-fold in LY-R cells and 50.3-fold in LY-S cells. Altogether, the sensitivity difference is related to the iron content, the amount of the initial DNA damage, as well as to the efficiency of the antioxidant defence system. Differential nuclear translocation of p65-NF-kappaB in LY sublines is due to the more efficient antioxidant defence in LY-S than in LY-R cells.  相似文献   

7.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   

8.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   

9.
Damaging reactive oxygen species are released during episodes of ischemia and reperfusion. Some cellular adaptive responses are triggered to protect the injured organ, while other cascades are triggered which potentiate the damage. In these studies, we demonstrate that rat cardiomyocte H9c2 cells release arachidonic acid in response to hydrogen peroxide. In H9c2 cells, arachidonic acid release is attenuated by methyl arachidonyl fluorophosphonate (MAFP) and pyrrophenone, indicating that a phospholipase A2 Group IV enzyme mediates arachidonic acid mobilization. Moreover, hydrogen peroxide alters the cellular morphology of the H9c2 cells, causing drastic cell shrinkage. Because MAFP and pyrrophenone prevent the morphological alterations caused by hydrogen peroxide, these studies show that phospholipase A2 Group IV activity is likely integrally involved in the damage initiated by hydrogen peroxide.  相似文献   

10.
Gonococci examined directly from urethral exudates are resistant to killing by human serum, but most strains become susceptible on subculture. Previous work with gonococci grown in vitro indicates that resistance in vivo is due to sialylation of gonococcal lipopolysaccharide (LPS) by a host factor, cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) or a related compound present in urogenital secretions and blood cells including phagocytes, which exude during inflammation. This sialylation inhibits the reaction between bactericidal IgM in serum and its target LPS sites. Here, we confirm the indication by using gonococci grown in vivo. Crucial to the above conclusions was the marked reduction of CMP-NANA-conferred serum resistance when gonococci were treated with neuraminidase to remove sialyl groups from their LPS. We now show that the serum resistance of gonococci in urethral exudates was reduced by treatment with neuraminidase from more than 95% (calculated in relation to controls incubated with heated serum) to 2-11% according to sample and incubation time. Subculture of the gonococci also reduced resistance to 9-11% but resistance was restored to more than 95% by incubation with CMP-NANA. This work is the culmination of an investigation that underlines the need to identify specific host factors and the virulence determinants they induce in vivo in future studies of pathogenicity.  相似文献   

11.
Irradiation with ultraviolet (u.v.) light (71 J/m2) reduced the viable count of suspenrsions of Serratia marcescens , grown in a glycerol-salts defined medium, to five in 104 cells. Subsequent incubation of irradiated cells in hydrogen peroxide failed to decrease the survivors, but u.v. irradiation in the presence of hydrogen peroxide reduced the viable count to fewer than two in 106 cells. Cells grown in defined medium with added iron had more measurable catalase activity and were more resistant to hydrogen peroxide alone and to simultaneous treatment with u.v. irradiation and hydrogen peroxide. Cells grown in a non-defined medium contained little iron and measurable catalase activity but were more resistant to hydrogen peroxide. Treatment with toluene, heat killing or sonication increased the catalase activity detected in all cell suspensions and showed that resistance to hydrogen peroxide and to u.v. irradiation in hydrogen peroxide was related to the total catalase activity within cells.  相似文献   

12.
We previously reported that oxidative stress is associated with unloading-mediated ubiquitination of muscle proteins. To further elucidate the involvement of oxidative stress in ubiquitination, we examined the ubiquitination profile in rat myoblastic L6 cells after treatment with hydrogen peroxide. Hydrogen peroxide induced many ubiquitinated proteins with low molecular masses (less than 60 kDa) as well as high molecular masses (more than 160 kDa). Among them, a 42-kDa-ubiquitinated protein was abundantly accumulated and immediately disappeared after the treatment. Microsequencing revealed that the 42-kDa-protein was identical to the mono-ubiquitinated form of rat lactate dehydrogenase A (LDH-A), and we confirmed that hydrogen peroxide induced the mono-ubiquitination of LDH-A in COS7 cells overexpressing LDH-A and ubiquitin. Under unloading conditions, such as tail-suspension and spaceflight, mono-ubiquitinated LDH was accumulated in gastrocnemius muscle. Interestingly, E-64-d plus pepstatin, lysosomal protease inhibitors, further accumulated mono-ubiquitinated LDH-A in the cells after treatment with hydrogen peroxide, while they did not affect the amount of poly-ubiquitinated LDH. In contrast, epoxomicin, a potent proteasome inhibitor, did not change the amount of mono-ubiquitinated LDH-A in L6 cells treated with hydrogen peroxide, although it significantly increased the amount of poly-ubiquitinated LDH. Our results suggest that oxidative stress induces not only poly-ubiquitination but also mono-ubiquitination of LDH-A, which may be involved in its lysosomal degradation during unloading.  相似文献   

13.
Human umbilical vein endothelial cells were more sensitive to hydrogen peroxide lysis than cow pulmonary artery endothelial cells. Conversely, activated neutrophils which utilize hydrogen peroxide-mediated cell cytotoxicity cell mechanisms were more toxic to the cow pulmonary artery cells. This discordance was not related to neutrophil adhesion to either cell type or cell passage number. The antioxidant profiles of the endothelial cells revealed that cow pulmonary artery cells were rich in catalase to consume bolus hydrogen peroxide presented to them, while human umbilical vein endothelial cells utilize glutathione peroxidase-linked mechanisms to detoxify a slower more sustained release of hydrogen peroxide generated by neutrophils. Endothelial cells from different species and sites may utilize diversified antioxidant protective mechanisms.  相似文献   

14.
Although sexual reproduction is widespread, its adaptive advantage over asexual reproduction is unclear. One major advantage of sex may be its promotion of recombinational repair of DNA damage during meiosis. This idea predicts that treatment of the asexual form of a facultatively sexual-asexual eucaryote with a DNA-damaging agent may cause it to enter the sexual cycle more frequently. Endogenous hydrogen peroxide is a major natural source of DNA damage. Thus, we treated vegetative cells of Schizosaccharomyces pombe with hydrogen peroxide to test if sexual reproduction increases. Among untreated stationary-phase S. pombe populations the sexual spores produced by meiosis represented about 1% of the total cells. However, treatment of late-exponential-phase vegetative cells with hydrogen peroxide increased the percentage of meiotic spores in the stationary phase by 4- to 18-fold. Oxidative damage therefore induces sexual reproduction in a facultatively sexual organism, a result expected by the hypothesis that sex promotes DNA repair.  相似文献   

15.
In this study, we asked the question of whether cells in 3D culture cope more effectively with cytotoxic agents than cells in 2D. The sensitivities of human skin cells (keratinocytes, dermal fibroblasts and endothelial cells) to oxidative stress (hydrogen peroxide) and to a potentially toxic heavy metal (silver) when cultured under 2D and 3D conditions were investigated. The results show a marked resistance of cells to a given dose of hydrogen peroxide or silver nitrate causing a 50% loss of viability in 3D cultures, when compared to the same cells grown in 2D. There was also an improvement in the ability of cells to withstand both stresses when cells were in co-culture rather than in mono-culture. Foetal calf serum was found to have a mild protective effect in 2D culture but this was not extended to findings in 3D culture. This study suggests that dermatotoxicity testing using 3D co-cultures might be more likely to reflect true physiological responses to xenobiotic materials than existing models that rely on 2D mono-cultures.  相似文献   

16.
To investigate the antioxidative capacities of oligodendrocytes, rat brain cultures enriched for oligodendroglial cells were prepared and characterized. These cultures contained predominantly oligodendroglial cells as determined by immunocytochemical staining for the markers galactocerebroside and myelin basic protein. If oligodendroglial cultures were exposed to exogenous hydrogen peroxide (100 micro m), the peroxide disappeared from the incubation medium following first order kinetics with a half-time of approximately 18 min. Normalization of the disposal rate to the protein content of the cultures by calculation of the specific hydrogen peroxide detoxification rate constant revealed that the cells in oligodendroglial cultures have a 60% to 120% higher specific capacity to dispose of hydrogen peroxide than cultures enriched for astroglial cells, microglial cells or neurones. Oligodendroglial cultures contained specific activities of 133.5 +/- 30.4 nmol x min(-1) x mg protein(-1) and 27.5 +/- 5.4 nmol x min(-1) x mg protein(-1) of glutathione peroxidase and glutathione reductase, respectively. The specific rate constant of catalase in these cultures was 1.61 +/- 0.54 min(-1) x mg protein(-1). Comparison with data obtained by identical methods for cultures of astroglial cells, microglial cells and neurones revealed that all three of the enzymes which are involved in hydrogen peroxide disposal were present in oligodendroglial cultures in the highest specific activities. These results demonstrate that oligodendroglial cells in culture have a prominent machinery for the disposal of hydrogen peroxide, which is likely to support the protection of these cells in brain against peroxides when produced by these or by surrounding brain cells.  相似文献   

17.
In vascular smooth muscle cells, Jak2 tyrosine kinase becomes activated in response to oxidative stress in the form of hydrogen peroxide. Although it has been postulated that hydrogen peroxide-induced Jak2 activation promotes cell survival, this has never been tested. We therefore examined the role that Jak2 plays in vascular smooth muscle cell apoptosis following hydrogen peroxide treatment. Here, we report that Jak2 tyrosine kinase activation by hydrogen peroxide is required for apoptosis of vascular smooth muscle cells. Upon treatment of primary rat aortic smooth muscle cells with hydrogen peroxide, we observed laddering of genomic DNA and nuclear condensation, both hallmarks of apoptotic cells. However, apoptosis was prevented by either the expression of a dominant negative Jak2 protein or by the Jak2 pharmacological inhibitor AG490. Moreover, expression of the proapoptotic Bax protein was induced following hydrogen peroxide treatment. Again, expression of a dominant negative Jak2 protein or treatment of cells with AG490 prevented this Bax induction. Following Bax induction by hydrogen peroxide, mitochondrial membrane integrity was compromised, and caspase-9 became activated. In contrast, in cells expressing a Jak2 dominant negative we observed that mitochondrial membrane integrity was preserved, and no caspase-9 activation occurred. These data demonstrate that the activation of Jak2 tyrosine kinase by hydrogen peroxide is essential for apoptosis of vascular smooth muscle cells. Furthermore, this report identifies Jak2 as a potential therapeutic target in vascular diseases in which vascular smooth muscle cell apoptosis contributes to pathological progression.  相似文献   

18.
This study investigates the effects of hydrogen peroxide, a potent oxygen free radical donor, on the phenotype and function of dendritic cells differentiated from peripheral blood precursors. We report that hydrogen peroxide induces an up-regulation of several dendritic cell surface markers involved in interaction with T cells, including MHC Class II molecules (DQ and DR) and the co-stimulatory molecules CD40 and CD86. Moreover we have observed that H2O2-treated dendritic cells are more efficient in promoting T cell proliferation than normal dendritic cells and that this enhancement can be blocked using the free radical scavenger agent N-acetylcysteine. Oxygen free radicals are a common by-product of inflammation, and our results suggest they may play an important role in activation of sentinel dendritic cells, linking tissue damage to the initiation of an adaptive immune response.  相似文献   

19.
An Rpn9-disrupted yeast strain, Delta rpn9, whose growth is temperature sensitive with defective assembly of the 26 S proteasome complex, was studied. This mutant yeast was more resistant to hydrogen peroxide treatment and able to degrade carbonylated proteins more efficiently than wild type. Nondenaturing gel electrophoresis followed by activity staining revealed that Delta rpn9 yeast cells had a higher activity of 20 S proteasome than wild type and that in both Delta rpn9 and wild-type cells treated with hydrogen peroxide, 20 S proteasome activity was increased with a concomitant decrease in 26 S proteasome activity. Protein multiubiquitination was not observed in the hydrogen peroxide-treated cells. Taken together, these results suggest that the 20 S proteasome degrades oxidized proteins without ubiquitination of target proteins.  相似文献   

20.
We studied the effect of doxorubicin on the production of hydrogen peroxide by PC3 human prostate cancer cells, using a sensitive assay based on aminotriazole-mediated inhibition of catalase. PC3 cells exposed to increasing concentrations of doxorubicin had an increase in intracellular hydrogen peroxide that was concentration-dependent up to 1 microM doxorubicin. The apparent hydrogen peroxide concentration in the PC3 cells was 13 +/- 4 pM under basal steady-state conditions and increased to 51 +/- 13 pM after exposure to 1 microM doxorubicin for 30 min. The level of hydrogen peroxide in the medium as measured by Amplex Red did not increase as a result of doxorubicin treatment. PC3 cells overexpressing catalase were no more resistant to doxorubicin cytotoxicity as compared to non-transduced wild-type cells; therefore, the exact role of hydrogen peroxide in anthracycline cytotoxicity remains unproven. This study demonstrates that a specific oxidative event associated with the exposure of PC3 human prostate cancer cells to anthracyclines results in an increase in intracellular hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号