首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta2 adrenergic receptor (beta2AR) undergoes desensitization by a process involving its phosphorylation by both protein kinase A (PKA) and G protein-coupled receptor kinases (GRKs). The protein kinase A-anchoring protein AKAP79 influences beta2AR phosphorylation by complexing PKA with the receptor at the membrane. Here we show that AKAP79 also regulates the ability of GRK2 to phosphorylate agonist-occupied receptors. In human embryonic kidney 293 cells, overexpression of AKAP79 enhances agonist-induced phosphorylation of both the beta2AR and a mutant of the receptor that cannot be phosphorylated by PKA (beta2AR/PKA-). Mutants of AKAP79 that do not bind PKA or target to the beta2AR markedly inhibit phosphorylation of beta2AR/PKA-. We show that PKA directly phosphorylates GRK2 on serine 685. This modification increases Gbetagamma subunit binding to GRK2 and thus enhances the ability of the kinase to translocate to the membrane and phosphorylate the receptor. Abrogation of the phosphorylation of serine 685 on GRK2 by mutagenesis (S685A) or by expression of a dominant negative AKAP79 mutant reduces GRK2-mediated translocation to beta2AR and phosphorylation of agonist-occupied beta2AR, thus reducing subsequent receptor internalization. Agonist-stimulated PKA-mediated phosphorylation of GRK2 may represent a mechanism for enhancing receptor phosphorylation and desensitization.  相似文献   

2.
We previously reported that the beta(1)-adrenergic receptor (beta(1)AR) associates with PSD-95 through a PDZ domain-mediated interaction, by which PSD-95 modulates beta(1)AR function and facilitates the physical association of beta(1)AR with other synaptic proteins such as N-methyl-d-aspartate receptors. Here we demonstrate that beta(1)AR association with PSD-95 is regulated by G protein-coupled receptor kinase 5 (GRK5). When beta(1)AR and PSD-95 were coexpressed with either GRK2 or GRK5 in COS-7 cells, GRK5 alone dramatically decreased the association of beta(1)AR with PSD-95, although GRK2 and GRK5 both could be co-immunoprecipitated with beta(1)AR and both could enhance receptor phosphorylation in vivo. Increasing expression of GRK5 in the cells led to further decreased beta(1)AR association with PSD-95. Stimulation with the beta(1)AR agonist isoproterenol further decreased PSD-95 binding to beta(1)AR. In addition, GRK5 protein kinase activity was required for this regulatory effect since a kinase-inactive GRK5 mutant had no effect on PSD-95 binding to beta(1)AR. Moreover, the regulatory effect of GRK5 on beta(1)AR association with PSD-95 was observed only when GRK5 was expressed together with the receptor, but not when GRK5 was coexpressed with PSD-95. Thus, we propose that GRK5 regulates beta(1)AR association with PSD-95 through phosphorylation of beta(1)AR. Regulation of protein association through receptor phosphorylation may be a general mechanism used by G protein-coupled receptors that associate via PDZ domain-mediated protein/protein interactions.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors, leading to receptor desensitization. Seven GRKs, designated GRK1 through 7, have been characterized. GRK5 is negatively regulated by protein kinase C. We investigated whether human substance P receptor (hSPR) is a substrate of GRK5. We report that membrane-bound hSPR is phosphorylated by purified GRK5, and that both the rate and extent of phosphorylation increase dramatically in the presence of substance P. The phosphorylation has a high stoichiometry (20+/-4 mol phosphate/mol hSPR) and a low K(m) (1.7+/-0.1 nM). These data provide the first evidence that hSPR is a substrate of GRK5.  相似文献   

4.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.  相似文献   

5.
Clathrin is a major component of clathrin-coated pits and serves as a binding scaffold for endocytic machinery through the binding of a specific sequence known as the clathrin-binding motif. This motif is also found in cellular signaling proteins other than endocytic components, including G protein-coupled receptor kinase 2 (GRK2), which phosphorylates G protein-coupled receptors and promotes uncoupling of receptor-G protein interaction. However, the functions of clathrin in the regulation of GRK2 are unknown. Here we demonstrated that overexpression of GRK2 mutated at the clathrin-binding motif with alanine (GRK2-5A) results in inhibition of phosphorylation and internalization of the beta2-adrenergic receptor (beta2AR). However, the interaction of beta2AR with GRK2-5A is the same as that of wild type GRK2 as determined by bioluminescence resonance energy transfer. Furthermore, GRK2-5A phosphorylates rhodopsin essentially to the same extent as wild type GRK2 in vitro. Depletion of the clathrin heavy chain using small interference RNA inhibits agonist-induced phosphorylation and internalization of beta2AR. Thus, clathrin works as a regulator of GRK2 in cells. These results indicate that clathrin is a novel player in cellular functions in addition to being a component of endocytosis.  相似文献   

6.
Accumulating evidence suggests that receptor protein-tyrosine kinases, like the platelet-derived growth factor receptor-beta (PDGFRbeta) and epidermal growth factor receptor (EGFR), may be desensitized by serine/threonine kinases. One such kinase, G protein-coupled receptor kinase-2 (GRK2), is known to mediate agonist-dependent phosphorylation and desensitization of multiple heptahelical receptors. In testing whether GRK2 could phosphorylate and desensitize the PDGFRbeta, we first found by phosphoamino acid analysis that cells expressing GRK2 could serine-phosphorylate the PDGFRbeta in an agonist-dependent manner. Augmentation or inhibition of GRK2 activity in cells, respectively, reduced or enhanced tyrosine phosphorylation of the PDGFRbeta but not the EGFR. Either overexpressed in cells or as a purified protein, GRK2 demonstrated agonist-promoted serine phosphorylation of the PDGFRbeta and, unexpectedly, the EGFR as well. Because GRK2 did not phosphorylate a kinase-dead (K634R) PDGFRbeta mutant, GRK2-mediated PDGFRbeta phosphorylation required receptor tyrosine kinase activity, as does PDGFRbeta ubiquitination. Agonist-induced ubiquitination of the PDGFRbeta, but not the EGFR, was enhanced in cells overexpressing GRK2. Nevertheless, GRK2 overexpression did not augment PDGFRbeta down-regulation. Like the vast majority of GRK2 substrates, the PDGFRbeta, but not the EGFR, activated heterotrimeric G proteins allosterically in membranes from cells expressing physiologic protein levels. We conclude that GRK2 can phosphorylate and desensitize the PDGFRbeta, perhaps through mechanisms related to receptor ubiquitination. Specificity of GRK2 for receptor protein-tyrosine kinases, expressed at physiologic levels, may be determined by the ability of these receptors to activate heterotrimeric G proteins, among other factors.  相似文献   

7.
beta(1)-Adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. However, beta(1)AR can internalize as G protein-coupled receptor kinase 2 (GRK2) is fused to its carboxyl terminus. Internalization of the beta(1)AR and GRK2 fusion protein (beta(1)AR/GRK2) is dependent on dynamin but independent of beta-arrestin and phosphorylation. The beta(1)AR/GRK2 fusion protein internalizes via clathrin-coated pits and is found to co-localize with the endosome that contains transferrin. The fusion proteins consisting of beta(1)AR and various portions of GRK2 reveal that the residues 498-502 in the carboxyl-terminal domain of GRK2 are critical to promote internalization of the fusion proteins. This domain contains a consensus sequence of a clathrin-binding motif defined as a clathrin box. In vitro binding assays show that the residues 498-502 of GRK2 bind the amino-terminal domain of clathrin heavy chain to almost the same extent as beta-arrestin1. The mutation of the clathrin box in the carboxyl-terminal domain of GRK2 results in the loss of the ability to promote internalization of the fusion protein. GRK2 activity increases and then decreases as the concentration of clathrin heavy chain increases. Taken together, these results imply that GRK2 contains a functional clathrin box and directly interacts with clathrin to modulate its function.  相似文献   

8.
Agonist-induced phosphorylation of beta-adrenergic receptors (beta ARs) by G protein-coupled receptor kinases (GRKs) results in their desensitization followed by internalization. Whether protein kinase A (PKA)-mediated phosphorylation of beta ARs, particularly the beta 1AR subtype, can also trigger internalization is currently not known. To test this, we cloned the mouse wild type beta 1AR (WT beta 1AR) and created 3 mutants lacking, respectively: the putative PKA phosphorylation sites (PKA-beta 1AR), the putative GRK phosphorylation sites (GRK-beta 1AR), and both sets of phosphorylation sites (PKA-/GRK-beta 1AR). Following agonist stimulation, both PKA-beta 1AR and GRK-beta 1AR mutants showed comparable increases in phosphorylation and desensitization. Saturating concentrations of agonist induced only 50% internalization of either mutant compared with wild type, suggesting that both PKA and GRK phosphorylation of the receptor contributed to receptor sequestration in an additive manner. Moreover, in contrast to the WT beta 1AR and PKA-beta 1AR, sequestration of the GRK-beta 1AR and PKA-/GRK-beta 1AR was independent of beta-arrestin recruitment. Importantly, clathrin inhibitors abolished agonist-dependent internalization for both the WT beta 1AR and PKA-beta 1AR, whereas caveolae inhibitors prevented internalization only of the GRK-beta 1AR mutant. Taken together, these data demonstrate that: 1) PKA-mediated phosphorylation can trigger agonist-induced internalization of the beta 1AR and 2) the pathway selected for beta 1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA-mediated phosphorylation directs internalization via a caveolae pathway, whereas GRK-mediated phosphorylation directs it through clathrin-coated pits.  相似文献   

9.
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor (GPCR) signaling. They constitute a family of seven mammalian serine-threonine protein kinases that phosphorylate agonist-bound receptor. GRKs-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling and desensitization. Activity of GRKs and subcellular targeting is tightly regulated by interaction with receptor domains, G protein subunits, lipids, anchoring proteins and calcium sensitive proteins. Moreover, GRK phosphorylation by several other kinases and autophosphorylation have recently been shown to modulate its functionality. This review summarize our current knowledge of GRKs regulatory mechanisms and GRKs physiological function.  相似文献   

10.
G protein-coupled receptor kinase 2 (GRK2) is able to phosphorylate a variety of agonist-occupied G protein-coupled receptors (GPCR) and plays an important role in GPCR modulation. However, recent studies suggest additional cellular functions for GRK2. Phosducin and phosducin-like protein (PhLP) are cytosolic proteins that bind Gbetagamma subunits and act as regulators of G-protein signaling. In this report, we identify phosducin and PhLP as novel GRK2 substrates. The phosphorylation of purified phosducin and PhLP by recombinant GRK2 proceeds rapidly and stoichiometrically (0.82 +/- 0.1 and 0.83 +/- 0.09 mol of P(i)/mol of protein, respectively). The phosphorylation reactions exhibit apparent K(m) values in the range of 40-100 nm, strongly suggesting that both proteins could be endogenous targets for GRK2 activity. Our data show that the site of phosducin phosphorylation by GRK2 is different and independent from that previously reported for the cAMP-dependent protein kinase. Analysis of GRK2 phosphorylation of a variety of deletion mutants of phosducin and PhLP indicates that the critical region for GRK2 phosphorylation is localized in the C-terminal domain of both phosducin and PhLP (between residues 204 and 245 and 195 and 218, respectively). This region is important for the interaction of these proteins with G beta gamma subunits. Phosphorylation of phosducin by GRK2 markedly reduces its G beta gamma binding ability, suggesting that GRK2 may modulate the activity of the phosducin protein family by disrupting this interaction. The identification of phosducin and PhLP as new substrates for GRK2 further expands the cellular roles of this kinase and suggests new mechanisms for modulating GPCR signal transduction.  相似文献   

11.
G protein-coupled receptors (GPCRs) mediate the ability of a diverse array of extracellular stimuli to control intracellular signaling. Many GPCRs are phosphorylated by G protein-coupled receptor kinases (GRKs), a process that mediates agonist-specific desensitization in many cells. Although GRK binding to activated GPCRs results in kinase activation and receptor phosphorylation, relatively little is known about the mechanism of GRK/GPCR interaction or how this interaction results in kinase activation. Here, we used the alpha2A-adrenergic receptor (alpha(2A)AR) as a model to study GRK/receptor interaction because GRK2 phosphorylation of four adjacent serines within the large third intracellular loop of this receptor is known to mediate desensitization. Various domains of the alpha(2A)AR were expressed as glutathione S-transferase fusion proteins and tested for the ability to bind purified GRK2. The second and third intracellular loops of the alpha(2A)AR directly interacted with GRK2, whereas the first intracellular loop and C-terminal domain did not. Truncation mutagenesis identified three discrete regions within the third loop that contributed to GRK2 binding, the membrane proximal N- and C-terminal regions as well as a central region adjacent to the phosphorylation sites. Site-directed mutagenesis revealed a critical role for specific basic residues within these regions in mediating GRK2 interaction with the alpha(2A)AR. Mutation of these residues within the holo-alpha(2A)AR diminished GRK2-promoted phosphorylation of the receptor as well as the ability of the kinase to be activated by receptor binding. These studies provide new insight into the mechanism of interaction and activation of GRK2 by GPCRs and suggest that GRK2 binding is critical not only for receptor phosphorylation but also for full activity of the kinase.  相似文献   

12.
The small family of G-protein-coupled receptor kinases (GRKs) regulate cell signaling by phosphorylating heptahelical receptors, thereby promoting receptor interaction with beta-arrestins. This switches a receptor from G-protein activation to G-protein desensitization, receptor internalization, and beta-arrestin-dependent signal activation. However, the specificity of GRKs for recruiting beta-arrestins to specific receptors has not been elucidated. Here we use the beta(2)-adrenergic receptor (beta(2)AR), the archetypal nonvisual heptahelical receptor, as a model to test functional GRK specificity. We monitor endogenous GRK activity with a fluorescence resonance energy transfer assay in live cells by measuring kinetics of the interaction between the beta(2)AR and beta-arrestins. We show that beta(2)AR phosphorylation is required for high affinity beta-arrestin binding, and we use small interfering RNA silencing to show that HEK-293 and U2-OS cells use different subsets of their expressed GRKs to promote beta-arrestin recruitment, with significant GRK redundancy evident in both cell types. Surprisingly, the GRK specificity for beta-arrestin recruitment does not correlate with that for bulk receptor phosphorylation, indicating that beta-arrestin recruitment is specific for a subset of receptor phosphorylations on specific sites. Moreover, multiple members of the GRK family are able to phosphorylate the beta(2)AR and induce beta-arrestin recruitment, with their relative contributions largely determined by their relative expression levels. Because GRK isoforms vary in their regulation, this partially redundant system ensures beta-arrestin recruitment while providing the opportunity for tissue-specific regulation of the rate of beta-arrestin recruitment.  相似文献   

13.
The G protein-coupled receptor kinase family comprises six members (GRK1 to GRK6) that phosphorylate and desensitize a number of agonist-occupied G protein-coupled receptors. Overexpression of the dominant negative mutant GRK2-K220R is often accompanied by an inhibition of the agonist-mediated phosphorylation of G protein-coupled receptors. In the case of the C5a receptor (C5aR), the overexpression of wild-type GRK2 or GRK6 as well as of catalytically inactive forms of these kinases (GRK2-K220R and GRK6-K215R) failed to increase or to inhibit the agonist-mediated phosphorylation of C5aR, respectively. Replacement of Lys215 by an arginine residue in GRK6 yielded a protein with a relative molecular mass of 63 kDa, whereas wild-type GRK6 had a relative molecular mass of 66 kDa on polyacrylamide gel. The mutations S484D and T485D in the catalytically inactive mutant GRK6-K215R resulted in a protein (GRK6-RDD) with the same electrophoretic mobility as wild-type GRK6. Furthermore, in the absence of phosphatase inhibitors, GRK6 was rapidly converted into the 63 kDa species, whereas GRK6-RDD was not. Overepression of GRK6-RDD failed to alter the agonist-mediated phosphorylation of C5aR. Taken together, the results suggest that C5aR is not a substrate for either GRK2 or GRK6 and that GRK6 is very likely autophosphorylated on Ser484 and Thr485 in vivo.  相似文献   

14.
G protein-coupled receptor kinases (GRKs) specifically recognize and phosphorylate the agonist-occupied form of numerous G protein-coupled receptors (GPCRs), ultimately resulting in desensitization of receptor signaling. Until recently, GPCRs were considered to be the only natural substrates for GRKs. However, the recent discovery that GRKs also phosphorylate tubulin raised the possibility that additional GRK substrates exist and that the cellular role of GRKs may be much broader than just GPCR regulation. Here we report that synucleins are a novel class of GRK substrates. Synucleins (alpha, beta, gamma, and synoretin) are 14-kDa proteins that are highly expressed in brain but also found in numerous other tissues. alpha-Synuclein has been linked to the development of Alzheimer's and Parkinson's diseases. We found that all synucleins are GRK substrates, with GRK2 preferentially phosphorylating the alpha and beta isoforms, whereas GRK5 prefers alpha-synuclein as a substrate. GRK-mediated phosphorylation of synuclein is activated by factors that stimulate receptor phosphorylation, such as lipids (all GRKs) and Gbetagamma subunits (GRK2/3), suggesting that GPCR activation may regulate synuclein phosphorylation. GRKs phosphorylate synucleins at a single serine residue within the C-terminal domain. Although the function of synucleins remains largely unknown, recent studies have demonstrated that these proteins can interact with phospholipids and are potent inhibitors of phospholipase D2 (PLD2) in vitro. PLD2 regulates the breakdown of phosphatidylcholine and has been implicated in vesicular trafficking. We found that GRK-mediated phosphorylation inhibits synuclein's interaction with both phospholipids and PLD2. These findings suggest that GPCRs may be able to indirectly stimulate PLD2 activity via their ability to regulate GRK-promoted phosphorylation of synuclein.  相似文献   

15.
G protein-coupled receptor signaling is dynamically regulated by multiple feedback mechanisms, which rapidly attenuate signals elicited by ligand stimulation, causing desensitization. The individual contributions of these mechanisms, however, are poorly understood. Here, we use an improved fluorescent biosensor for cAMP to measure second messenger dynamics stimulated by endogenous beta(2)-adrenergic receptor (beta(2)AR) in living cells. beta(2)AR stimulation with isoproterenol results in a transient pulse of cAMP, reaching a maximal concentration of approximately 10 microm and persisting for less than 5 min. We investigated the contributions of cAMP-dependent kinase, G protein-coupled receptor kinases, and beta-arrestin to the regulation of beta(2)AR signal kinetics by using small molecule inhibitors, small interfering RNAs, and mouse embryonic fibroblasts. We found that the cAMP response is restricted in duration by two distinct mechanisms in HEK-293 cells: G protein-coupled receptor kinase (GRK6)-mediated receptor phosphorylation leading to beta-arrestin mediated receptor inactivation and cAMP-dependent kinase-mediated induction of cAMP metabolism by phosphodiesterases. A mathematical model of beta(2)AR signal kinetics, fit to these data, revealed that direct receptor inactivation by cAMP-dependent kinase is insignificant but that GRK6/beta-arrestin-mediated inactivation is rapid and profound, occurring with a half-time of 70 s. This quantitative system analysis represents an important advance toward quantifying mechanisms contributing to the physiological regulation of receptor signaling.  相似文献   

16.
G protein-coupled receptor kinases (GRKs) specifically bind and phosphorylate the agonist-occupied form of G protein-coupled receptors. To further characterize the mechanism of GRK/receptor interaction, we developed a yeast-based bioassay using strains engineered to functionally express the somatostatin receptor subtype 2 and exhibit agonist-dependent growth. Here, we demonstrate that agonist-promoted growth was effectively inhibited by co-expression with either wild type GRK2 or GRK5, whereas catalytically inactive forms of these kinases were without effect. In an effort to identify residues involved in receptor interaction, we generated a pool of GRK5 mutants and then utilized the bioassay to identify mutants selectively deficient in inhibiting agonist-promoted growth. This resulted in the identification of a large number of mutants, several of which were expressed, purified, and characterized in more detail. Two of the mutants, GRK5-L3Q/K113R and GRK5-T10P, were defective in receptor phosphorylation and also exhibited a partial defect in phospholipid binding and phospholipid-stimulated autophosphorylation of the kinase. In contrast, these mutants had wild type activity in phosphorylating the non-receptor substrate tubulin. To further characterize the function of the NH2-terminal region of GRK5, we generated a deletion mutant lacking residues 2-14 and found that this mutant was also severely impaired in receptor phosphorylation and phospholipid-promoted autophosphorylation. In addition, an NH2-terminal 14-amino acid peptide from GRK5 selectively inhibited receptor phosphorylation by GRK5 but had minimal effect on GRK2 activity. Based on these findings, we propose a model whereby the extreme NH2 terminus of GRK5 mediates phospholipid binding and is required for optimal receptor phosphorylation.  相似文献   

17.
Agonist-dependent activation of G protein-coupled receptors induces diversified receptor cellular and signaling properties. Norepinephrine (NE) and epinephrine (Epi) are two endogenous ligands that activate adrenoceptor (AR) signals in a variety of physiological stress responses in animals. Here we use cardiomyocyte contraction rate response to analyze the endogenous beta(2)AR signaling induced by Epi or NE in cardiac tissue. The Epi-activated beta(2)AR induced a rapid contraction rate increase that peaked at 4 min after stimulation. In contrast, the NE-activated beta(2)AR induced a much slower contraction rate increase that peaked at 10 min after stimulation. Whereas both drugs activated beta(2)AR coupling to G(s) proteins, only Epi-activated receptors were capable of coupling to G(i) proteins. Subsequent studies showed that the Epi-activated beta(2)AR underwent a rapid phosphorylation by G protein-coupled receptor kinase 2 (GRK2) and subsequent dephosphorylation on serine residues 355 and 356, which was critical for sufficient receptor recycling and G(i) coupling. In contrast, the NE-activated beta(2)ARs underwent slow GRK2 phosphorylation, receptor internalization and recycling, and failed to couple to G(i). Moreover, inhibiting beta(2)AR phosphorylation by betaARK C terminus or dephosphorylation by okadaic acid prevented sufficient recycling and G(i) coupling. Together, our data revealed that distinct temporal phosphorylation of beta(2)AR on serine 355 and 356 by GRK2 plays a critical role for dictating receptor cellular events and signaling properties induced by Epi or NE in cardiomyocytes. This study not only helps us understand the endogenous agonist-dependent beta(2)AR signaling in animal heart but also offers an example of how G protein-coupled receptor signaling may be finely regulated by GRK in physiological settings.  相似文献   

18.
Agonist-dependent regulation of G protein-coupled receptors is dependent on their phosphorylation by G protein-coupled receptor kinases (GRKs). GRK2 and GRK3 are selectively regulated in vitro by free Gbetagamma subunits and negatively charged membrane phospholipids through their pleckstrin homology (PH) domains. However, the molecular binding determinants and physiological role for these ligands remain unclear. To address these issues, we generated an array of site-directed mutants within the GRK2 PH domain and characterized their interaction with Gbetagamma and phospholipids in vitro. Mutation of several residues in the loop 1 region of the PH domain, including Lys-567, Trp-576, Arg-578, and Arg-579, resulted in a loss of receptor phosphorylation, likely via disruption of phospholipid binding, that was reversed by Gbetagamma. Alternatively, mutation of residues distal to the C-terminal amphipathic alpha-helix, including Lys-663, Lys-665, Lys-667, and Arg-669, resulted in decreased responsiveness to Gbetagamma. Interestingly, mutation of Arg-587 in beta-sheet 3, a region not previously thought to interact with Gbetagamma, resulted in a specific and profound loss of Gbetagamma responsiveness. To further characterize these effects, two mutants (GRK2(K567E/R578E) and GRK2(R587Q)) were expressed in Sf9 cells and purified. Analysis of these mutants revealed that GRK2(K567E/R578E) was refractory to stimulation by negatively charged phospholipids but bound Gbetagamma similar to wild-type GRK2. In contrast, GRK2(R587Q) was stimulated by acidic phospholipids but failed to bind Gbetagamma. In order to examine the role of phospholipid and Gbetagamma interaction in cells, wild-type and mutant GRK2s were expressed with a beta(2)-adrenergic receptor (beta(2)AR) mutant that is responsive to GRK2 phosphorylation (beta(2)AR(Y326A)). In these cells, GRK2(K567E/R578E) and GRK2(R587Q) were largely defective in promoting agonist-dependent phosphorylation and internalization of beta(2)AR(Y326A). Similarly, wild-type GRK2 but not GRK2(K567E/R578E) or GRK2(R587Q) promoted morphinedependent phosphorylation of the mu-opioid receptor in cells. Thus, we have (i) identified several specific GRK2 binding determinants for Gbetagamma and phospholipids, and (ii) demonstrated that Gbetagamma binding is the limiting step for GRK2-dependent receptor phosphorylation in cells.  相似文献   

19.
G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding uncouple G protein-coupled receptors (GPCRs) from their respective G proteins and initiates the process of receptor internalization. In the case of the beta(2)-adrenergic receptor and lysophosphatidic acid receptor, these processes can lead to ERK activation. Here we identify a novel mechanism whereby the activity of GRK2 is regulated by feedback inhibition. GRK2 is demonstrated to be a phosphoprotein in cells. Mass spectrometry and mutational analysis localize the site of phosphorylation on GRK2 to a carboxyl-terminal serine residue (Ser(670)). Phosphorylation at Ser(670) impairs the ability of GRK2 to phosphorylate both soluble and membrane-incorporated receptor substrates and dramatically attenuates Gbetagamma-mediated activation of this enzyme. Ser(670) is located in a peptide sequence that conforms to an ERK consensus phosphorylation sequence, and in vitro, in the presence of heparin, ERK1 phosphorylates GRK2. Inhibition of ERK activity in HEK293 cells potentiates GRK2 activity, whereas, conversely, ERK activation inhibits GRK2 activity. The discovery that ERK phosphorylates and inactivates GRK2 suggests that ERK participates in a feedback regulatory loop. By negatively regulating GRK-mediated receptor phosphorylation, beta-arrestin-mediated processes such as Src recruitment and clathrin-mediated internalization, which are required for GPCR-mediated ERK activation, are inhibited, thus dampening further ERK activation.  相似文献   

20.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号